Chronic lymphocytic leukaemia genetics overview.

Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
British Journal of Haematology (Impact Factor: 4.94). 01/2008; 139(5):630-4. DOI: 10.1111/j.1365-2141.2007.06846.x
Source: PubMed

ABSTRACT Although the familial aspect of chronic lymphocytic leukaemia (CLL) has been appreciated for decades, it is only with the recent confluence of improved molecular and gene technologies and world-wide collaborative networks that accelerated progress has become apparent. In this summary we highlight selected themes in the genetics of CLL emphasizing the opportunities and challenges of this malignancy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic lymphocytic leukemia (CLL) is a common hematological malignancy in Western countries. However, this disease is very rare in Asian countries. It is not clear whether the mechanisms of development of CLL in Caucasians and Asians are the same. We compared genetic abnormalities in Asian and Caucasian CLL using 250k GeneChip arrays. Both Asian and Caucasian CLL had four common genetic abnormalities: deletion of 13q14.3, trisomy 12, abnormalities of ATM (11q) and abnormalities of 17p. Interestingly, trisomy 12 and deletion of 13q14.3 were mutually exclusive in both groups. We also found that deletions of miR 34b/34c (11q), caspase 1/4/5 (11q), Rb1 (13q) and DLC1 (8p) are common in both ethnic groups. Asian CLL more frequently had gain of 3q and 18q. These suggest that classic genomic changes in the Asian and Caucasina CLL are same. Further, we found amplification of IRF4 and deletion of the SP140/SP100 genes; these genes have been reported as CLL-associated genes by previous genome-wide-association study. We have found classic genomic abnormalities in Asian CLL as well as novel genomic alteration in CLL.
    International Journal of Oncology 05/2013; 43(2). DOI:10.3892/ijo.2013.1966 · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aetiology of most haematological malignancies is largely unknown. Studies of migrant populations can provide insights into the relative importance of genetic and environmental risk factors for these diseases. This study compares incidence rates in British Indians, Pakistanis, Bangladeshis, Black Africans, Black Caribbeans, Chinese and Whites in England from 2001 to 2007. We analysed 134 302 haematological cancer registrations with ethnicity obtained by linkage to the Hospital Episodes Statistics database. Mid-year population estimates from 2001 to 2007 were used. Incidence rate ratios adjusted for age, sex and income were calculated, comparing the six ethnic groups to Whites and to each other. Whites had the highest rates for most subtypes. However, Blacks experienced more than double the incidence of plasma cell and mature T-cell neoplasms compared to other ethnic groups. There were also significant differences in incidence between Indians, Pakistanis and Bangladeshis for Hodgkin lymphoma and mature B-cell neoplasms and between Black African and Black Caribbeans for mature B-cell and other lymphoid neoplasms (all P < 0·001). Our results show that the risk of haematological cancers varies greatly by ethnic group, including within those groups that have traditionally been grouped together (South Asians and Blacks) with many of these differences not explicable by known risk factors.
    British Journal of Haematology 09/2013; 163(4). DOI:10.1111/bjh.12562 · 4.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis or programmed cell death is a genetically regulated process of cellular suicide. Apoptosis has been im-plicated in a wide range of pathological conditions, and mutations in apoptotic genes play important roles in the process of malignant transformation. Chronic leukemia represents a neoplastic disorder caused primarily by defective programmed cell death, as opposed to increased cell proliferation. This paper presents the main results of our ten-year research on the apoptosis of leukemia cells. The research included the morphological aspects of the process, the effect of antineoplastic agents on the induction of apoptosis in leukemia cells and expression analysis of the proteins involved in programmed cell death. Special attention was paid to the expression and interaction of the Bcl-2 family of proteins in leukemia cells. The ultimate aim of the study of apoptosis of leukemic cells is the discovery of new biological agents that might be used in the treatment of chronic leukemia.
    Archives of Biological Sciences 01/2011; 63(3). DOI:10.2298/ABS1103527B · 0.61 Impact Factor

Full-text (2 Sources)

Available from
Nov 12, 2014