Article

Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation?

Department of Biology, University of California - Riverside, 900 University Avenue, Riverside CA 92521, USA. <>
Trends in Ecology & Evolution (Impact Factor: 15.35). 02/2008; 23(1):26-32. DOI: 10.1016/j.tree.2007.09.011
Source: PubMed

ABSTRACT Biologists often distinguish 'convergent' from 'parallel' evolution. This distinction usually assumes that when a given phenotype evolves, the underlying genetic mechanisms are different in distantly related species (convergent) but similar in closely related species (parallel). However, several examples show that the same phenotype might evolve among populations within a species by changes in different genes. Conversely, similar phenotypes might evolve in distantly related species by changes in the same gene. We thus argue that the distinction between 'convergent' and 'parallel' evolution is a false dichotomy, at best representing ends of a continuum. We can simplify our vocabulary; all instances of the independent evolution of a given phenotype can be described with a single term - convergent.

0 Followers
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The different manifestations of equivalence and similarity in structure throughout evolution suggest a continuous and hierarchical process that starts out with the origin of a morphological novelty, unit, or homologue. Once a morphological unit has originated, its properties change subsequently into variants that differ, in magnitude, from the original properties found in the common ancestor. We will look into the nature of morphological units and their degrees of modification, which will provide the starting point for restructuring the concept of "homology," keeping the use of homology as the identity of an anatomical part, and homogeny, as the specific variation of that anatomical part during evolution. We will also show that parallelism has a distinct placement within an evolutionary continuum between homology and homoplasy, whereas the phenomenon of evolutionary convergence is left outside this continuum. We will then provide some epistemological and developmental criteria to justify these distinctions, showing that there is a direct relation between the nature of these concepts and the constraints that developmental mechanisms impose on evolution. Finally, we will propose a hierarchical model that places homology, homogeny, homoplasy, and parallelism, as distinct phenomena within an evolutionary continuum. J. Exp. Zool. (Mol. Dev. Evol.) 00B: 1-13, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Journal of Experimental Zoology Part B Molecular and Developmental Evolution 03/2015; 324(2):91-103. DOI:10.1002/jez.b.22605 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the genetic architecture of adaptive traits has been at the centre of modern evolutionary biology since Fisher; however, evaluating how the genetic architecture of ecologically important traits influences their diversification has been hampered by the scarcity of empirical data. Now, high-throughput genomics facilitates the detailed exploration of variation in the genome-to-phenotype map among closely related taxa. Here, we investigate the evolution of wing pattern diversity in Heliconius, a clade of neotropical butterflies that have undergone an adaptive radiation for wing-pattern mimicry and are influenced by distinct selection regimes. Using crosses between natural wing-pattern variants, we used genome-wide restriction site-associated DNA (RAD) genotyping, traditional linkage mapping and multivariate image analysis to study the evolution of the architecture of adaptive variation in two closely related species: Heliconius hecale and H. ismenius. We implemented a new morphometric procedure for the analysis of whole-wing pattern variation, which allows visualising spatial heatmaps of genotype-to-phenotype association for each quantitative trait locus separately. We used the H. melpomene reference genome to fine-map variation for each major wing-patterning region uncovered, evaluated the role of candidate genes and compared genetic architectures across the genus. Our results show that, although the loci responding to mimicry selection are highly conserved between species, their effect size and phenotypic action vary throughout the clade. Multilocus architecture is ancestral and maintained across species under directional selection, whereas the single-locus (supergene) inheritance controlling polymorphism in H. numata appears to have evolved only once. Nevertheless, the conservatism in the wing-patterning toolkit found throughout the genus does not appear to constrain phenotypic evolution towards local adaptive optima.
    Heredity 03/2015; DOI:10.1038/hdy.2015.22 · 3.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An area of great interest in evolutionary genomics is whether convergently evolved traits are the result of convergent molecular mechanisms. The presence of queen and worker castes in insect societies is a spectacular example of convergent evolution and phenotypic plasticity. Multiple insect lineages have evolved environmentally induced alternative castes. Given multiple origins of eusociality in Hymenoptera (bees, ants, and wasps), it has been proposed that insect castes evolved from common genetic “toolkits” consisting of deeply conserved genes. Here, we combine data from previously published studies on fire ants and honey bees with new data for Polistes metricus paper wasps to assess the toolkit idea by presenting the first comparative transcriptome-wide analysis of caste determination among three major hymenopteran social lineages. Overall, we found few shared caste differentially expressed transcripts across the three social lineages. However, there is substantially more overlap at the levels of pathways and biological functions. Thus, there are shared elements but not on the level of specific genes. Instead, the toolkit appears to be relatively “loose,” that is, different lineages show convergent molecular evolution involving similar metabolic pathways and molecular functions but not the exact same genes. Additionally, our paper wasp data do not support a complementary hypothesis that “novel” taxonomically restricted genes are related to caste differences.
    Molecular Biology and Evolution 01/2015; 32:690-703. · 14.31 Impact Factor

Full-text (3 Sources)

Download
344 Downloads
Available from
Jun 4, 2014