Article

Determination of protein oligomerization state: two approaches based on glutaraldehyde crosslinking.

Department of Biology, University of Crete, PO Box 2208, GR-71409 Heraklion, Crete, Greece.
Analytical Biochemistry (Impact Factor: 2.58). 03/2008; 373(2):404-6. DOI:10.1016/j.ab.2007.10.027
Source: PubMed

ABSTRACT Many biochemical and biophysical methods can be used to characterize the oligomerization state of proteins. One of the most widely used is glutaraldehyde crosslinking, mainly because of the minimum equipment and reagents required. However, the crosslinking procedures currently in use are impaired by the low specificity of the reagent, which can chemically bond any two amino groups that are close in space. Thus, extensive and time-consuming investigation of the reaction conditions is usually required. Here we describe two approaches based on glutaraldehyde that readily give reliable results.

0 0
 · 
5 Bookmarks
 · 
426 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The reversible reaction catalyzed by serine hydroxymethyltransferase (SHMT) is the major one-carbon unit source for essential metabolic processes. The Arabidopsis thaliana genome encodes seven SHMT isozymes localized in mitochondria, plastids, nuclei, and the cytosol. Knowledge of the biochemical properties of each isozyme is central to understanding and manipulating one-carbon metabolism in plants. We heterologously expressed and purified three recombinant SHMTs from A. thaliana (AtSHMTs) putatively localized in mitochondria (two) and the cytosol (one). Their biochemical properties were characterized with respect to the impact of folate polyglutamylation on substrate saturation kinetics. The two mitochondrial AtSHMTs, but not the cytosolic one, had increased turnover rates at higher (>0.4 ng/μL) enzyme concentrations in the presence of monoglutamylated folate substrates, but not in the presence of pentaglutamylated folate substrates. We found no experimental support for a change in oligomerization state over the range of enzyme concentration studied. Modeling of the enzyme structures presented features that may explain the activity differences between the mitochondrial and cytosolic isozymes.
    Archives of Biochemistry and Biophysics 06/2013; · 3.37 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: White spot syndrome virus (WSSV) is a large enveloped virus. The WSSV viral particle consists of three structural layers that surround its core DNA: an outer envelope, a tegument and a nucleocapsid. Here we characterize the WSSV structural protein VP11 (WSSV394, GenBank accession number AF440570), and use an interactome approach to analyze the possible associations between this protein and an array of other WSSV and host proteins. Temporal transcription analysis showed that vp11 is an early gene. Western blot hybridization of the intact viral particles and fractionation of the viral components, and immunoelectron microscopy showed that VP11 is an envelope protein. Membrane topology software predicted VP11 to be a type of transmembrane protein with a highly hydrophobic transmembrane domain at its N-terminal. Based on an immunofluorescence assay performed on VP11-transfected Sf9 cells and a trypsin digestion analysis of the virion, we conclude that, contrary to topology software prediction, the C-terminal of this protein is in fact inside the virion. Yeast two-hybrid screening combined with co-immunoprecipitation assays found that VP11 directly interacted with at least 12 other WSSV structural proteins as well as itself. An oligomerization assay further showed that VP11 could form dimers. VP11 is also the first reported WSSV structural protein to interact with the major nucleocapsid protein VP664.
    PLoS ONE 01/2014; 9(1):e85779. · 3.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Tuberculosis (TB) is a major global health threat. There is a need for the development of more efficient drugs for the sterilization of the disease's causative agent, Mycobacterium tuberculosis (MTB). A more comprehensive understanding of the bacilli's nucleotide metabolic pathways could aid in the development of new anti-mycobacterial drugs. Here we describe expression and purification of recombinant iunH-encoded nucleoside hydrolase from MTB (MtIAGU-NH). Glutaraldehyde cross-linking results indicate that MtIAGU-NH predominates as a monomer, presenting varied oligomeric states depending upon binding of ligands. Steady-state kinetics results show that MtIAGU-NH has broad substrate specificity, accepting inosine, adenosine, guanosine, and uridine as substrates. Inosine and adenosine displayed positive homotropic cooperativity kinetics, whereas guanosine and uridine displayed hyperbolic saturation curves. Measurements of kinetics of ribose binding to MtIAGU-NH by fluorescence spectroscopy suggest two pre-existing forms of enzyme prior to ligand association. The intracellular concentrations of inosine, uridine, hypoxanthine, and uracil were determined and thermodynamic parameters estimated. Thermodynamic activation parameters (Ea, ΔG(#), ΔS(#), ΔH(#)) for MtIAGU-NH-catalyzed chemical reaction are presented. Results from mass spectrometry, isothermal titration calorimetry (ITC), pH-rate profile experiment, multiple sequence alignment, and molecular docking experiments are also presented. These data should contribute to our understanding of the biological role played by MtIAGU-NH.
    Archives of Biochemistry and Biophysics 08/2013; · 3.37 Impact Factor

Full-text (2 Sources)

View
67 Downloads
Available from
Mar 22, 2013