Cancer stem cells in solid tumors.

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, CA 94304, United States.
Current Opinion in Biotechnology (Impact Factor: 8.04). 11/2007; 18(5):460-6. DOI: 10.1016/j.copbio.2007.10.007
Source: PubMed

ABSTRACT Cancer stem cells (CSCs) are cells that drive tumorigenesis, as well as giving rise to a large population of differentiated progeny that make up the bulk of the tumor, but that lack tumorigenic potential. CSCs have been identified in a variety of human tumors, as assayed by their ability to initiate tumor growth in immunocompromised mice. Further characterization studies have demonstrated that gene expression profiles in breast cancer correlate with patient prognosis, and brain CSCs are specifically resistant to radiation through DNA damage repair. In addition, specific signaling pathways play a functional role in CSC self renewal and/or differentiation, and early studies indicate that CSCs are associated with a microenvironmental niche. Thus the biological properties of CSCs are just beginning to be revealed, and the continuation of these studies should lead to the development of CSC-targeted therapies for cancer treatment.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since their description and identification in leukemias and solid tumors, cancer stem cells (CSC) have been the subject of intensive research in translational oncology. Indeed, recent advances have led to the identification of CSC markers, CSC targets, and the preclinical and clinical evaluation of the CSC-eradicating (curative) potential of various drugs. However, although diverse CSC markers and targets have been identified, several questions remain, such as the origin and evolution of CSC, mechanisms underlying resistance of CSC against various targeted drugs, and the biochemical basis and function of stroma cell-CSC interactions in the so-called ‘stem cell niche.’ Additional aspects that have to be taken into account when considering CSC elimination as primary treatment-goal are the genomic plasticity and extensive subclone formation of CSC. Notably, various cell fractions with different combinations of molecular aberrations and varying proliferative potential may display CSC function in a given neoplasm, and the related molecular complexity of the genome in CSC subsets is considered to contribute essentially to disease evolution and acquired drug resistance. In the current article, we discuss new developments in the field of CSC research and whether these new concepts can be exploited in clinical practice in the future.
    Journal of Hematology & Oncology 02/2015; 8(1). DOI:10.1186/s13045-015-0113-9 · 4.93 Impact Factor
  • Source
    Technical Report: Cancer Cellular Dynamics
    [Show abstract] [Hide abstract]
    ABSTRACT: CANCER We have expanded and combined work done previously into a single White Paper discussing cancer cell dynamics. We demonstrate the various ways to model cell growth, diffusion and flow across the body and integrate the genetic changes anticipated.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.
    04/2015; 21(13):3876-87. DOI:10.3748/wjg.v21.i13.3876