PPARalpha-dependent induction of the energy homeostasis-regulating nuclear receptor NR1i3 (CAR) in rat hepatocytes: potential role in starvation adaptation.

Universität Potsdam, Institut für Ernährungswissenschaft, Biochemie der Ernährung, Arthur-Scheunert-Allee 114-116, D-14558, Nuthetal, Germany.
FEBS Letters (Impact Factor: 3.58). 01/2008; 581(29):5617-26. DOI: 10.1016/j.febslet.2007.11.011
Source: PubMed

ABSTRACT A tight hormonal control of energy homeostasis is of pivotal relevance for animals. Recent evidence suggests an involvement of the nuclear receptor NR1i3 (CAR). Fasting induces CAR by largely unknown mechanisms and CAR-deficient mice are defective in fasting adaptation. In rat hepatocytes CAR was induced by WY14643, a PPARalpha-agonist. A DR1 motif in the CAR promoter was necessary and sufficient for this control. The PPARalpha-dependent increase in CAR potentiated the phenobarbital-induced transcription of the prototypical CAR-dependent gene CYP2B1. Since free fatty acids are natural ligands for PPARalpha, a fasting-induced increase in free fatty acids might induce CAR. In accordance with this hypothesis, CAR induction by fasting was abrogated in PPARalpha-deficient mice.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous xenobiotic metabolizing enzymes are regulated by nuclear receptors at transcriptional level. The challenge we currently face is to understand how a given nuclear receptor interacts with its xenobiotics, migrates into nucleus, binds to the xenobiotic response element of a target gene, and regulates transcription. Toward this end, new methods have been developed to introduce the nuclear receptor gene into appropriate cells and study its activity in activating reporter gene expression under the control of a promoter containing xenobiotic response elements. The goal of this review is to critically examine the gene transfer methods currently available. We concentrate on the gene transfer mechanism, advantages and limitations of each method when employed for nuclear receptor-mediated gene regulation studies. It is our hope that the information provided highlights the importance of gene transfer in studying the mechanisms by which our body eliminates the potentially harmful substances and maintains the homeostasis.
    Advanced drug delivery reviews 10/2010; 62(13):1250-6. · 11.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mycotoxin, patulin (PAT), which is frequently found in apples, grapes, oranges, pear, peaches, and in apple juices, has previously been shown to be cytotoxic, genotoxic, and mutagenic. In this study, we have investigated the effect of PAT on mRNA level of pregnane X receptor (PXR), constitutive androstane receptor (CAR), aryl hydrocarbon receptor (AhR), and their corresponding target cytochrome P450s. Using primary cultures of adult human hepatocytes, we evaluated PAT cytotoxicity on hepatocytes after 24 hours of treatment. Real time reverse-transcriptase polymerase chain reaction procedure was employed to determine the effect of PAT on receptors (PXR, CAR, and AhR) and cytochrome (CYP3A4, 2B6, 3A5, 2C9, 1A1, and 1A2) genes. Our results showed that PAT reduced hepatocyte viability. At a noncytotoxic range of PAT concentrations, PAT induced an upregulation of the PXR gene in the three treated hepatocytes cultures, whereas CAR was overexpressed in only 1 treated liver. PXR gene induction was accompanied by the enhancement of CYP2B6, 3A5, 2C9, and 3A4 expression. PAT was also found to induce an overexpression of AhR and CYP1A1 and CYP1A2 mRNA expression. These findings suggested that PAT may activate PXR and/or CAR and AhR. However, further investigations are needed to confirm nuclear receptor activation by PAT and to elucidate the molecular mechanism of PAT action.
    Drug and Chemical Toxicology 09/2011; 35(3):241-50. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary restriction (DR) is the gold standard intervention used to delay aging, and much recent research has focused on the identification of possible DR mimetics. Energy sensing pathways, including insulin/IGF1 signaling, sirtuins, and mammalian Target of Rapamycin (mTOR), have been proposed as pathways involved in the antiaging actions of DR, and compounds that affect these pathways have been suggested to act as DR mimetics, including metformin (insulin/IGF1 signaling), resveratrol (sirtuins), and rapamycin (mTOR). Rapamycin is a promising DR mimetic because it significantly increases both health span and life span in mice. Unfortunately, rapamycin also leads to some negative effects, foremost among which is the induction of insulin resistance, potentially limiting its translation into humans. To begin clarifying the mechanism(s) involved in insulin resistance induced by rapamycin, we compared several aspects of liver metabolism in mice treated with DR or rapamycin for 6 months. Our data suggest that although both DR and rapamycin inhibit lipogenesis, activate lipolysis, and increased serum levels of nonesterified fatty acids, only DR further activates β-oxidation of the fatty acids leading to the production of ketone bodies.
    The Journals of Gerontology Series A Biological Sciences and Medical Sciences 04/2014; · 4.31 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014