Primer and probe sets for group-specific quantification of the generaNitrosomonas andNitrosospira using real-time PCR

School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Namgu, Pohang, Gyungbuk 790-784, South Korea.
Biotechnology and Bioengineering (Impact Factor: 4.16). 04/2008; 99(6):1374-83. DOI: 10.1002/bit.21715
Source: PubMed

ABSTRACT Use of quantitative real-time PCR (QPCR) with TaqMan probes is increasingly popular in various environmental works to detect and quantify a specific microorganism or a group of target microorganism. Although many aspects of conducting a QPCR assay have become very easy to perform, a proper design of oligonucleotide sequences comprising primers and a probe is still considered as one of the most important aspects of a QPCR application. This work was conducted to design group specific primer and probe sets for the detection of ammonia oxidizing bacteria (AOB) using a real-time PCR with a TaqMan system. The genera Nitrosomonas and Nitrosospira were grouped into five clusters based on similarity of their 16S rRNA gene sequences. Five group-specific AOB primer and probe sets were designed. These sets separately detect four subgroups of Nitrosomonas (Nitrosomonas europaea-, Nitrosococcus mobilis-, Nitrosomonas nitrosa-, and Nitrosomonas cryotolerans-clusters) along with the genus Nitrosospira. Target-group specificity of each primer and probe set was initially investigated by analyzing potential false results in silico, followed by a series of experimental tests for QPCR efficiency and detection limit. In general, each primer and probe set was very specific to the target group and sensitive to detect target DNA as low as two 16S rRNA gene copies per reaction mixture. QPCR efficiency, higher than 93.5%, could be achieved for all primer and probe sets. The primer and probe sets designed in this study can be used to detect and quantify the beta-proteobacterial AOB in biological nitrification processes and various environments.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligonucleotide sets are widely used in molecular biology to target a group of nucleic acid sequences using Polymerase Chain Reaction (PCR)-based technologies. Currently, the global matching efficiency of an oligonucleotide set is considered to be equal to the lower matching efficiency calculated for each oligonucleotide. However, sequences matching the limiting oligonucleotide did not always match the other oligonucleotide of the set, resulting in a biased evaluation of the matching efficiency. The Oligo- SpecificitySystem program avoid this bias by calculations of the real global matching efficiency of oligonucleotide sets. It can process all kinds of oligonucleotide sets, including the number of oligonucleotides, base pair degeneracy occurrences or mismatch occurrences.
    International Journal of Data Mining and Bioinformatics 01/2014; 9(4):417 - 423. DOI:10.1504/IJDMB.2014.062148 · 0.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial abundance is central to most investigations in microbial ecology and its accurate measurement is a challenging task that has been significantly facilitated by the advent of molecular techniques over the last twenty years. Fluorescence in situ hybridisation (FISH) is considered the gold standard of quantification techniques; however, it is expensive and offers low sample throughput, both of which limit its wider application. Quantitative PCR is an alternative that offers significantly higher throughput and it is used extensively in molecular biology. The accuracy of qPCR can be compromised by biases in the DNA extraction and amplification steps. In this study, we compared the accuracy of these two established quantification techniques to measure the abundance of a key functional group in biological wastewater treatment systems, the ammonia-oxidising bacteria (AOB), in samples from a time-series experiment monitoring a set of laboratory-scale reactors and a full-scale plant. For the qPCR analysis, we tested two different sets of AOB-specific primers, one targeting the 16SrRNA gene and one targeting the ammonia monooxygenase (amoA) gene. We found that there was a positive linear logarithmic relationship between FISH and the amoA gene-specific qPCR, where the data obtained from both techniques was equivalent at the order of magnitude level. The 16S rRNA gene-specific qPCR assay consistently underestimated AOB numbers.
    Applied and Environmental Microbiology 07/2014; 80(19). DOI:10.1128/AEM.01383-14 · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A real-time quantitative polymerase chain reaction (QPCR) was used to evaluate biokinetic coefficients of Nitrosomonas nitrosa and N. cryotolerans clusters growing simultaneously in a batch mode of ammonia oxidation. The mathematical models based on Monod equation were employed to describe the competitive relationship between these clusters and were fitted to experimental data to obtain biokinetic values. The maximum growth rates (μ m), half-saturation coefficients (K S), microbial yields (Y) and decay coefficients (k d) of N. nitrosa and N. cryotolerans were 1.77 and 1.21 day(-1), 23.25 and 23.06 mg N·L(-1), 16 × 10(8) and 1 × 10(8) copies·mg N(-1), 0.26 and 0.20 day(-1), respectively. The estimated coefficients were applied for modeling continuous operations at various hydraulic retention times (HRTs) with an influent ammonia concentration of 300 mg N·L(-1). Modeling results revealed that ammonia oxidation efficiencies were achieved 55-98 % at 0.8-10 days HRTs and that the system was predicted to be washed out at HRT of 0.7 days. Overall, use of QPCR for estimating biokinetic coefficients of the two AOB cluster growing simultaneously by use of ammonia were successful. This idea may open a new direction towards biokinetics of ammonia oxidation in which respirometry tests are usually employed.
    Journal of Industrial Microbiology 07/2013; DOI:10.1007/s10295-013-1297-z · 2.51 Impact Factor


Available from