Article

Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain.

Centre with Potential for Excellence in Biomedical Sciences, Panjab University, Chandigarh, 160014, India.
Pharmacology Biochemistry and Behavior (Impact Factor: 2.61). 03/2008; 88(4):511-22. DOI: 10.1016/j.pbb.2007.10.009
Source: PubMed

ABSTRACT Tardive dyskinesia (TD) is a motor disorder of the orofacial region resulting from chronic neuroleptic treatment. A high incidence and irreversibility of this hyperkinetic disorder has been considered a major clinical issue in the treatment of schizophrenia. The molecular mechanism related to the pathophysiology of tardive dyskinesia is not completely known. Various animal studies have demonstrated an enhanced oxidative stress and increased glutamatergic transmission as well as inhibition in the glutamate uptake after the chronic administration of haloperidol. The present study investigated the effect of curcumin, an antioxidant, in haloperidol-induced tardive dyskinesia by using different behavioural (orofacial dyskinetic movements, stereotypy, locomotor activity, % retention), biochemical (lipid peroxidation, reduced glutathione levels, antioxidant enzyme levels (SOD and catalase) and neurochemical (neurotransmitter levels) parameters. Chronic administration of haloperidol (1 mg/kg i.p. for 21 days) significantly increased vacuous chewing movements (VCM's), tongue protrusions, facial jerking in rats which was dose-dependently inhibited by curcumin. Chronic administration of haloperidol also resulted in increased dopamine receptor sensitivity as evident by increased locomotor activity and stereotypy and also decreased % retention time on elevated plus maze paradigm. Pretreatment with curcumin reversed these behavioral changes. Besides, haloperidol also induced oxidative damage in all major regions of brain which was attenuated by curcumin, especially in the subcortical region containing striatum. On chronic administration of haloperidol, there was a decrease in turnover of dopamine, serotonin and norepinephrine in both cortical and subcortical regions which was again dose-dependently reversed by treatment with curcumin. The findings of the present study suggested for the involvement of free radicals in the development of neuroleptic-induced tardive dyskinesia and point to curcumin as a possible therapeutic option to treat this hyperkinetic movement disorder.

0 Bookmarks
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The management of neuropathic pain is still a major challenge because of its unresponsiveness to most common treatments. Curcumin has been reported to play an active role in the treatment of various neurological disorders, such as neuropathic pain. Curcumin has long been recognized as a p300/CREB-binding protein (CBP) inhibitor of histone acetyltransferase (HAT) activity. However, this mechanism has never been investigated for the treatment of neuropathic pain with curcumin. The aim of the present study was to investigate the anti-nociceptive role of curcumin in the chronic constriction injury (CCI) rat model of neuropathic pain. Furthermore, with this model we investigated the effect of curcumin on P300/CBP HAT activity-regulated release of the pro-nociceptive molecules, brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (Cox-2). Treatment with 40 and 60 mg/kg body weight curcumin for 7 consecutive days significantly attenuated CCI-induced thermal hyperalgesia and mechanical allodynia, whereas 20 mg/kg curcumin showed no significant analgesic effect. Chromatin immunoprecipitation analysis revealed that curcumin dose-dependently reduced the recruitment of p300/CBP and acetyl-Histone H3/acetyl-Histone H4 to the promoter of BDNF and Cox-2 genes. A similar dose-dependent decrease of BDNF and Cox-2 in the spinal cord was also observed after curcumin treatment. These results indicated that curcumin exerted a therapeutic role in neuropathic pain by down-regulating p300/CBP HAT activity-mediated gene expression of BDNF and Cox-2.
    PLoS ONE 01/2014; 9(3):e91303. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite decades of research, tardive dyskinesia (TD) remains a poorly understood iatrogenic movement disorder with few effective treatments and no known cure. Accordingly, the development of an innocuous strategy to prevent or mitigate antipsychotic (AP)-associated TD would represent an important clinical advance. Supporting evidence for antioxidant (AX)-based treatment regimens can be found in the preclinical literature, where AP-induced vacuous chewing movements (VCMs) in rats are attenuated by the concurrent administration of direct and indirect AXs. Our aim was to review the preclinical literature examining the role of AX-promoting treatments in the prevention of AP-induced VCMs in rats. A literature search using Google Scholar and PubMed was performed. Relevant results were qualitatively reviewed. Studies featuring a variety of naturally occurring and synthetic AX treatments were identified and included in the review. The majority of studies used haloperidol (HAL), a typical AP, to induce VCMs. Studies revealed reduced VCMs in co-treated rats, with favorable changes seen in markers of oxidative stress (OS) and AX status, but were limited by their short durations. Some preclinical evidence suggests that the inclusion of a naturally occurring and benign AX compound as an adjunct to AP treatment may help guard patients against TD, but additional long-duration studies are needed. This AX-based strategy is further substantiated by accumulating evidence of preexisting OS abnormalities in schizophrenia (SZ).
    Psychopharmacology 04/2014; · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Exosomes/microvesicles are originated from multivesicular bodies that allow the secretion of endolysosome components out of the cell. In the present work, we investigated the effects of curcumin, a polyphenol, on exosomes/microvesicles secretion in different cells lines, using U18666A as a model of intracellular cholesterol trafficking impairment. In both HepG2 hepatocarcinoma cells and THP-1 differentiated macrophages, treatment with curcumin affected the size and the localization of endosome/lysosomes accumulated by U18666A, and reduced the cholesterol cell content. To ascertain the mechanism, we analyzed the incubation medium. Curcumin stimulated the release of cholesterol and the lysosomal β-hexosaminidase enzyme, as well as the exosome markers, flotillin-2 and CD63. Electron microscopy studies demonstrated the presence of small vesicles similar to exosomes/microvesicles in the secretion fluid. These vesicles harbored CD63 on their surface, indicative of their endolysosomal origin. These effects of curcumin were particularly intense in cells treated with U18666A. These findings indicate that curcumin ameliorates the U18666A-induced endolysosomal cholesterol accumulation by shuttling cholesterol and presumably other lipids out of the cell via exosomes/microvesicles secretion. This action may contribute to the potential of curcumin in the treatment of lysosomal storage diseases.
    Molecular Nutrition & Food Research 11/2013; · 4.31 Impact Factor