Article

Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells.

Department of Chemistry, University of Southern California, College of Letters, Arts, and Sciences, University Park Campus, Los Angeles, CA 90089, USA.
Cancer Letters (Impact Factor: 5.02). 02/2008; 259(1):82-98. DOI: 10.1016/j.canlet.2007.10.005
Source: PubMed

ABSTRACT This study is the first to investigate the anticancer effect of plumbagin in human melanoma A375.S2 cells. Plumbagin exhibited effective cell growth inhibition by inducing cancer cells to undergo S-G2/M phase arrest and apoptosis. Further investigation revealed that plumbagin's inhibition of cell growth was also evident in a nude mice model. Blockade of cell cycle was associated with increased levels of p21, and reduced amounts of cyclin B1, cyclin A, Cdc2, and Cdc25C. Plumbagin also enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C. Plumbagin triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activation. We also found the generation of ROS is a critical mediator in plumbagin-induced cell growth inhibition. Plumbagin increased the activation of apoptosis signal-regulating kinase 1, JNK and extracellular signal-regulated kinase 1/2 (ERK1/2), but not p38. In addition, antioxidants vitamin C and catalase significantly decreased plumbagin-mediated c-Jun N-terminal kinase (JNK) activation and apoptosis. Moreover, blocking ERK and JNK by specific inhibitors suppressed plumbagin-triggered mitochondrial apoptotic pathway. Taken together, these results imply a critical role for ROS and JNK in the plumbagin's anticancer activity.

1 Follower
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To detect effects of plumbagin on proliferation and apoptosis in non-small cell lung cancer cell lines, and investigate the underlying mechanisms. Materials and Methods: Human non-small cell lung cancer cell lines A549, H292 and H460 were treated with various concentrations of plumbagin. Cell proliferation rates was determined using both cell counting kit-8 (CCK-8) and clonogenic assays. Apoptosis was detected by annexin V/propidium iodide double-labeled flow cytometry and TUNEL assay. The levels of reactive oxygen species (ROS) were detected by flow cytometry. Activity of NF-κB was examined by electrophoretic mobility shift assay (EMSA) and luciferase reporter assay. Western blotting was used to assess the expression of both NF-κB regulated apoptotic-related gene and activation of p65 and IκBκ. Results: Plumbagin dose-dependently inhibited proliferation of the lung cancer cells. The IC50 values of plumbagin in A549, H292, and H460 cells were 10.3 μmol/L, 7.3 μmol/L, and 6.1 μmol/L for 12 hours, respectively. The compound concentration-dependently induced apoptosis of the three cell lines. Treatment with plumbagin increased the intracellular level of ROS, and inhibited the activation of NK-κB. In addition to inhibition of NF-κB/p65 nuclear translocation, the compound also suppressed the degradation of IκBκ. ROS scavenger NAC highly reversed the effect of plumbagin on apoptosis and inactivation of NK-κB in H460 cell line. Treatment with plumbagin also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl-2, upregulated the expression of Bax, Bak, and CytC. Conclusions: Plumbagin inhibits cell growth and induces apoptosis in human lung cancer cells through an NF-κB-regulated mitochondrial-mediated pathway, involving activation of ROS.
    Asian Pacific journal of cancer prevention: APJCP 04/2013; 14(4):2325-2331. DOI:10.7314/APJCP.2013.14.4.2325 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present here first time that Plumbagin (PL), a medicinal plant-derived 1,4-naphthoquinone, inhibits the growth and metastasis of human prostate cancer (PCa) cells in an orthotopic xenograft mouse model. In this study, human PCa PC-3M-luciferase cells (2 × 10(6)) were injected into the prostate of athymic nude mice. Three days post cell implantation, mice were treated with PL (2 mg/kg body wt. i.p. five days in a week) for 8 weeks. Growth and metastasis of PC-3M-luciferase cells was examined weekly by bioluminescence imaging of live mice. PL-treatment significantly (p = 0.0008) inhibited the growth of orthotopic xenograft tumors. Results demonstrated a significant inhibition of metastasis into liver (p = 0.037), but inhibition of metastasis into the lungs (p = 0.60) and lymph nodes (p = 0.27) was not observed to be significant. These results were further confirmed by histopathology of these organs. Results of histopathology demonstrated a significant inhibition of metastasis into lymph nodes (p = 0.034) and lungs (p = 0.028), and a trend to significance in liver (p = 0.075). None of the mice in the PL-treatment group showed PCa metastasis into the liver, but these mice had small metastasis foci into the lymph nodes and lungs. However, control mice had large metastatic foci into the lymph nodes, lungs, and liver. PL-caused inhibition of the growth and metastasis of PC-3M cells accompanies inhibition of the expression of: 1) PKCε, pStat3Tyr705, and pStat3Ser727, 2) Stat3 downstream target genes (survivin and Bcl(xL)), 3) proliferative markers Ki-67 and PCNA, 4) metastatic marker MMP9, MMP2, and uPA, and 5) angiogenesis markers CD31 and VEGF. Taken together, these results suggest that PL inhibits tumor growth and metastasis of human PCa PC3-M-luciferase cells, which could be used as a therapeutic agent for the prevention and treatment of human PCa.
    Molecular oncology 12/2012; 7(3). DOI:10.1016/j.molonc.2012.12.001 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic cancer (PC) is the most aggressive malignant disease, ranks as the fourth most leading cause of cancer-related death among men and women in the United States. We present here that plumbagin (PL), a quinoid constituent isolated from the roots of the medicinal plant Plumbago zeylanica L, inhibits the growth of PC cells both in vitro and in vivo model systems. PL treatment induces apoptosis and inhibits cell viability of PC cells (PANC1, BxPC3 and ASPC1). In addition, i.p. administration of PL (2 mg/kg body weight, 5 days a week) in severe combined immunodeficiency (SCID) mice beginning 3 days after ectopic implantation of PANC1 cells resulted in a significant (P < 0.01) inhibition of both tumor weight and volume. PL treatment inhibited (1) constitutive expression of epidermal growth factor receptor (EGFR), pStat3Tyr705 and pStat3Ser727, (2) DNA binding of Stat3 and (3) physical interaction of EGFR with Stat3, in both cultured PANC1 cells and their xenograft tumors. PL treatment also inhibited phosphorylation and DNA-binding activity of NF-κB in both cultured PC cells (PANC1 and ASPC1) and in PANC1 cells xenograft tumors. Downstream target genes (cyclin D1, MMP9 and Survivin) of Stat3 and NF-κB were similarly inhibited. These results suggest that PL may be used as a novel therapeutic agent against human PC. Published 2012 Wiley-Liss, Inc. This article is a US Government work, and, as such, is in the public domain in the United States of America.
    International Journal of Cancer 11/2012; 131(9):2175-86. DOI:10.1002/ijc.27478 · 5.01 Impact Factor