Article

Differential requirements by CD4+ and CD8+ T cells for soluble and membrane TNF in control of Francisella tularensis live vaccine strain intramacrophage growth

Laboratory of Mycobacterial Diseases and Cellular Immunology, Center for Biologics Research and Evaluation, US Food and Drug Administration, Rockville, MD 20852, USA.
The Journal of Immunology (Impact Factor: 5.36). 01/2008; 179(11):7709-19. DOI: 10.4049/jimmunol.179.11.7709
Source: PubMed

ABSTRACT During primary infection with intracellular bacteria, the membrane-associated form of TNF provides some TNF functions, but the relative contributions during memory responses are not well-characterized. In this study, we determined the role of T cell-derived secreted and membrane-bound TNF (memTNF) during adaptive immunity to Francisella tularensis live vaccine strain (LVS). Although transgenic mice expressing only the memTNF were more susceptible to primary LVS infection than wild-type (WT) mice, LVS-immune WT and memTNF mice both survived maximal lethal secondary Francisella challenge. Generation of CD44(high) memory T cells and clearance of bacteria were similar, although more IFN-gamma and IL-12(p40) were produced by memTNF mice. To examine T cell function, we used an in vitro tissue coculture system that measures control of LVS intramacrophage growth by LVS-immune WT and memTNF-T cells. LVS-immune CD4(+) and CD8(+) T cells isolated from WT and memTNF mice exhibited comparable control of LVS growth in either normal or TNF-alpha knockout macrophages. Although the magnitude of CD4(+) T cell-induced macrophage NO production clearly depended on TNF, control of LVS growth by both CD4(+) and CD8(+) T cells did not correlate with levels of nitrite. Importantly, intramacrophage LVS growth control by CD8(+) T cells, but not CD4(+) T cells, was almost entirely dependent on T cell-expressed TNF, and required stimulation through macrophage TNFRs. Collectively, these data demonstrate that T cell-expressed memTNF is necessary and sufficient for memory T cell responses to this intracellular pathogen, and is particularly important for intramacrophage control of bacterial growth by CD8(+) T cells.

Download full-text

Full-text

Available from: Siobhán C Cowley, Aug 16, 2015
0 Followers
 · 
61 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic bacteria and their hosts have had a two-way conversation for millions of years. This interaction has led to many measure/counter-measure responses by the host and bacteria. The host immune response has developed many mechanisms to neutralize and remove pathogen bacteria. In turn pathogenic bacteria have developed mechanisms to alter and evade the host immune response. We will review some of the mechanisms utilized by bacteria to accomplish this goal. We will also examine the current state of understanding of Francisella tularensis mediated immune evasion.
    Immunologic Research 08/2008; 41(3):188-202. DOI:10.1007/s12026-008-8021-5 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial or host determinants of lethality associated with respiratory Francisella infections are currently unknown. No exo- or endotoxins that contribute to the severity of this disease have been identified. However, a deregulated host immune response upon infection is characterized by an initial 36- to 48-h delay followed by a rapid and excessive inflammatory response prior to death at 72-120 h. Here, we extend these findings by comparing host immune responses between sublethal and lethal respiratory infections of mice with an attenuated transposon mutant (Mut) of F. novicida (F.n.) strain U112 (sublethal) versus the wild-type (WT) strain (lethal). Infection with WT bacteria, but not the Mut, was characterized by sustained bacteremia and systemic dissemination of the pathogen with temporal increases in bacterial burdens in liver and spleen. Severe pathology with large foci of infiltrates associated with extensive tissue damage was evident in WT-infected lungs, and Mut-infected mice displayed much reduced pathology with intact lung architecture. Similar to other experimental models of severe sepsis, WT- but not the Mut-infected mice exhibited a robust increase in numbers of Gr1+ and CD11b+ cells, while displaying a significant depletion of alphabeta T cells. Further, a dramatic up-regulation of multiple cytokines and chemokines was observed only in lethal WT infection. In addition, an earlier and larger increased expression of S100A9, a known mediator of sepsis, was observed in WT-infected mice. Taken together, these results show that a hyperinflammatory host immune response, culminating in severe sepsis, is responsible for the lethal outcome of respiratory tularemia.
    Journal of leukocyte biology 05/2009; 86(3):491-504. DOI:10.1189/jlb.1208728 · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immunization with five different types of TB vaccine preparations (Mycobacterium bovis BCG, an attenuated M. tuberculosis mutant strain, a DNA vaccine, a modified vaccinia virus strain Ankara [MVA] construct expressing four TB antigens, and a TB fusion protein formulated in adjuvant) can be detected. Importantly, the levels of vaccine-induced mycobacterial growth-inhibitory responses seen in vitro after 1 week of coculture correlated with the protective immune responses detected in vivo at 28 days postchallenge in a mouse model of pulmonary tuberculosis. In addition, similar patterns of cytokine expression were evoked at day 7 of the in vitro culture by immune splenocytes taken from animals immunized with the different TB vaccines. Among the consistently upregulated cytokines detected in the immune cocultures are gamma interferon, growth differentiation factor 15, interleukin-21 (IL-21), IL-27, and tumor necrosis factor alpha. Overall, we have developed an in vitro functional assay that may be useful for screening and comparing new TB vaccine preparations, investigating vaccine-induced protective mechanisms, and assessing manufacturing issues, including product potency and stability.
    Clinical and vaccine Immunology: CVI 06/2009; 16(7):1025-32. DOI:10.1128/CVI.00067-09 · 2.37 Impact Factor
Show more