Article

Defective T cell development and function in the absence of Abelson kinases.

Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
The Journal of Immunology (Impact Factor: 5.52). 01/2008; 179(11):7334-43.
Source: PubMed

ABSTRACT Thymocyte proliferation, survival, and differentiation are tightly controlled by signaling from the pre-TCR. In this study, we show for the first time that the Abelson (Abl) kinases regulate proximal signaling downstream of the pre-TCR. Conditional deletion of Abl kinases in thymocytes reveals a cell-autonomous role for these proteins in T cell development. The conditional knockout mice have reduced numbers of thymocytes, exhibit an increase in the percentage of the CD4(-)CD8(-) double-negative population, and are partially blocked in the transition to the CD4(+)CD8(+) double-positive stage. Moreover, the total number of T cells is greatly reduced in the Abl mutant mice, and the null T cells exhibit impaired TCR-induced signaling, proliferation, and cytokine production. Notably, Abl mutant mice are compromised in their ability to produce IFN-positive CD8 T cells and exhibit impaired CD8(+) T cell expansion in vivo upon Listeria monocytogenes infection. Furthermore, Ab production in response to T cell-dependent Ag is severely impaired in the Abl mutant mice. Together these findings reveal cell-autonomous roles for the Abl family kinases in both T cell development and mature T cell function, and show that loss of these kinases specifically in T cells results in compromised immunity.

0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Abelson (ABL) family of nonreceptor tyrosine kinases, ABL1 and ABL2, transduces diverse extracellular signals to protein networks that control proliferation, survival, migration and invasion. ABL1 was first identified as an oncogene required for the development of leukaemias initiated by retroviruses or chromosome translocations. The demonstration that small-molecule ABL kinase inhibitors could effectively treat chronic myeloid leukaemia opened the door to the era of targeted cancer therapies. Recent reports have uncovered roles for ABL kinases in solid tumours. Enhanced ABL expression and activation in some solid tumours, together with altered cell polarity, invasion or growth induced by activated ABL kinases, suggest that drugs targeting these kinases may be useful for treating selected solid tumours.
    Nature Reviews Cancer 07/2013; · 29.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phagocytosis of Ab-coated pathogens is mediated through FcγRs, which activate intracellular signaling pathways to drive actin cytoskeletal rearrangements. Abl and Arg define a family of nonreceptor tyrosine kinases that regulate actin-dependent processes in a variety of cell types, including those important in the adaptive immune response. Using pharmacological inhibition as well as dominant negative and knockout approaches, we demonstrate a role for the Abl family kinases in phagocytosis by macrophages and define a mechanism whereby Abl kinases regulate this process. Bone marrow-derived macrophages from mice lacking Abl and Arg kinases exhibit inefficient phagocytosis of sheep erythrocytes and zymosan particles. Treatment with the Abl kinase inhibitors imatinib and GNF-2 or overexpression of kinase-inactive forms of the Abl family kinases also impairs particle internalization in murine macrophages, indicating Abl kinase activity is required for efficient phagocytosis. Further, Arg kinase is present at the phagocytic cup, and Abl family kinases are activated by FcγR engagement. The regulation of phagocytosis by Abl family kinases is mediated in part by the spleen tyrosine kinase (Syk). Loss of Abl and Arg expression or treatment with Abl inhibitors reduced Syk phosphorylation in response to FcγR ligation. The link between Abl family kinases and Syk may be direct, as purified Arg kinase phosphorylates Syk in vitro. Further, overexpression of membrane-targeted Syk in cells treated with Abl kinase inhibitors partially rescues the impairment in phagocytosis. Together, these findings reveal that Abl family kinases control the efficiency of phagocytosis in part through the regulation of Syk function.
    The Journal of Immunology 10/2012; · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of B cells is dependent on the sequential DNA rearrangement of immunoglobulin loci that encode subunits of the B cell receptor. The pathway navigates a crucial checkpoint that ensures expression of a signalling-competent immunoglobulin heavy chain before commitment to rearrangement and expression of an immunoglobulin light chain. The checkpoint segregates proliferation of pre-B cells from immunoglobulin light chain recombination and their differentiation into B cells. Recent advances have revealed the molecular circuitry that controls two rival signalling systems, namely the interleukin-7 (IL-7) receptor and the pre-B cell receptor, to ensure that proliferation and immunoglobulin recombination are mutually exclusive, thereby maintaining genomic integrity during B cell development.
    Nature Reviews Immunology 12/2013; · 32.25 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
May 23, 2014