Flexibility in the ABC transporter MsbA: Alternating access with a twist

Departments of Cell Biology and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CB-105, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2007; 104(48):19005-10. DOI: 10.1073/pnas.0709388104
Source: PubMed

ABSTRACT ATP-binding cassette (ABC) transporters are integral membrane proteins that translocate a wide variety of substrates across cellular membranes and are conserved from bacteria to humans. Here we compare four x-ray structures of the bacterial ABC lipid flippase, MsbA, trapped in different conformations, two nucleotide-bound structures and two in the absence of nucleotide. Comparison of the nucleotide-free conformations of MsbA reveals a flexible hinge formed by extracellular loops 2 and 3. This hinge allows the nucleotide-binding domains to disassociate while the ATP-binding half sites remain facing each other. The binding of the nucleotide causes a packing rearrangement of the transmembrane helices and changes the accessibility of the transporter from cytoplasmic (inward) facing to extracellular (outward) facing. The inward and outward openings are mediated by two different sets of transmembrane helix interactions. Altogether, the conformational changes between these structures suggest that large ranges of motion may be required for substrate transport.

Download full-text


Available from: Christopher B Roth, May 19, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Cells are surrounded by a membrane that acts like a barrier to many molecules. This membrane either stops molecules from entering or exiting the cell, or at least slows their movement. However, it is important that cells can remove some molecules, such as toxins, and that nutrients and certain other molecules can get into cells. As such, cells rely on ‘transporter’ proteins embedded within the membrane to move these molecules through the membrane. Transporters called ‘Multidrug ABC exporters’ are found in almost all living things, and use the energy released by breaking down molecules of adenosine triphosphate (ATP for short) to pump toxins out of cells. Although the three-dimensional shapes of many transporters are known, it is not clear how the energy released from ATP molecules allows the transporter to move a toxin from one side of the membrane to the other. Here, Mishra et al. have looked at how the shape of an ABC exporter from a bacterium called Bacillus subtilis changes as it interacts with ATP. Most bacterial ABC exporters are made from two copies of the same protein, but the B. subtilis exporter is made from two slightly different proteins, one of which is less able to bind to and break down ATP. Mishra et al. found that those parts of the two proteins that bind to ATP can adopt a range of different shapes that had not been seen before. Moreover, the parts of the proteins that extend across the cell membrane face into the cell when the ATP binds, and switch to face out of the cell when the ATP is broken down. This movement of the proteins would allow toxic molecules inside the cell to enter the exporter, and then be pushed to the outside of the cell. The findings of Mishra et al. show that not all ABC exporters work by the same mechanism. Future work could extend this new understanding to multidrug ABC transporters from humans, which remove waste and harmful molecules from our cells and have been implicated in resistance to chemotherapy in cancer cells. DOI:
    eLife Sciences 05/2014; 3:e02740. DOI:10.7554/eLife.02740 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we describe molecular dynamics simulations results of the interactions between four peptides (mTM10, mTM16, TM17 and KTM17) with micelles of dodecylphosphocholine (DPC) and dodecyl-β-D-maltoside (DDM). These peptides represent three transmembrane fragments (TM10, 16 and 17) from the MSD1 and MSD2 membrane-spanning domains of an ABC membrane protein (hMRP1), which play roles in the protein functions. The peptide-micelle complexes structures, including the tryptophan accessibility and dynamics were compared to circular dichroism and fluorescence studies obtained in water, trifluoroethanol and with micelles. Our work provides additional results not directly accessible by experiments that give further support to the fact that these peptides adopt an interfacial conformation within the micelles. We also show that the peptides are more buried in DDM than in DPC, and consequently, that they have a larger surface exposure to water in DPC than in DDM. As noted previously by simulations and experiments we have also observed formation of cation-π bonds between the phosphocholine DPC headgroup and Trp peptide residue. Concerning the peptide secondary structures (SS), we find that in TFE their initial helical conformations are maintained during the simulation, whereas in water their initial SS are lost after few nanoseconds of simulation. An intermediate situation is observed with micelles, where the peptides remain partially folded and more structured in DDM than in DPC. Finally, our results show no sign of β-strand structure formation as invoked by far-UV CD experiments even, when three identical peptides are simulated either in water or with micelles.
    Biochimica et Biophysica Acta 10/2013; 1838(1):493–509. DOI:10.1016/j.bbamem.2013.10.012 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: CFTR is the only ABC transporter functioning as a chloride (Cl-) channel. We studied molecular determinants, which might distinguish CFTR from standard ABC transporters, and focused on the interface formed by the intracellular loops from the membrane spanning domains. METHODS: Residues from ICL2 and ICL4 in close proximity were targeted, and their involvement in the functioning of CFTR was studied by whole cell patch clamp recording. RESULTS: We identified 2 pairs of amino acids, at the extremity of the bundle formed by the four intracellular loops, whose mutation i) decreases the Cl- current of CFTR (couple E267-K1060) or ii) increases it with a change of the electrophysiological signature (couple S263-V1056). CONCLUSIONS: These results highlight the critical role of these ICL residues in the assembly of the different domains and/or in the Cl- permeation pathway of CFTR.
    Journal of cystic fibrosis: official journal of the European Cystic Fibrosis Society 03/2013; 12(6). DOI:10.1016/j.jcf.2013.02.002 · 3.82 Impact Factor