FTIR spectroscopy of secondary-structure reorientation of melibiose permease modulated by substrate binding.

Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, Barcelona, Spain.
Biophysical Journal (Impact Factor: 3.83). 06/2008; 94(9):3659-70. DOI: 10.1529/biophysj.107.115550
Source: PubMed

ABSTRACT Analysis of infrared polarized absorbance spectra and linear dichroism spectra of reconstituted melibiose permease from Escherichia coli shows that the oriented structures correspond mainly to tilted transmembrane alpha-helices, forming an average angle of approximately 26 degrees with the membrane normal in substrate-free medium. Examination of the deconvoluted linear dichroism spectra in H(2)O and D(2)O makes apparent two populations of alpha-helices differing by their tilt angle (helix types I and II). Moreover, the average helical tilt angle significantly varies upon substrate binding: it is increased upon Na(+) binding, whereas it decreases upon subsequent melibiose binding in the presence of Na(+). In contrast, melibiose binding in the presence of H(+) causes virtually no change in the average tilt angle. The data also suggest that the two helix populations change their tilting and H/D exchange level in different ways depending on the bound substrate(s). Notably, cation binding essentially influences type I helices, whereas melibiose binding modifies the tilting of both helix populations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The melibiose carrier from Escherichia coli (MelB) couples the accumulation of the disaccharide melibiose to the downhill entry of H(+), Na(+), or Li(+). In this work, substrate-induced FTIR difference spectroscopy was used in combination with fluorescence spectroscopy to quantitatively compare the conformational properties of MelB mutants, implicated previously in sodium binding, with those of a fully functional Cys-less MelB permease. The results first suggest that Asp55 and Asp59 are essential ligands for Na(+) binding. Secondly, though Asp124 is not essential for Na(+) binding, this acidic residue may play a critical role, possibly by its interaction with the bound cation, in the full Na(+)-induced conformational changes required for efficient coupling between the ion- and sugar-binding sites; this residue may also be a sugar ligand. Thirdly, Asp19 does not participate in Na(+) binding but it is a melibiose ligand. The location of these residues in two independent threading models of MelB is consistent with their proposed role.
    Proceedings of the National Academy of Sciences 12/2010; 107(51):22078-83. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The trimeric Na(+)-coupled betaine symporter BetP from Corynebactrium glutamicum adjusts transport activity according to the external osmolality. BetP senses the increasing internal K(+) concentration, which is an immediate consequence of osmotic upshift in C. glutamicum. It is assumed that BetP specifically binds potassium to yet unidentified binding sites, thereby inducing conformational changes resulting in activation. Atomic structures of BetP were obtained in the absence of potassium allowing only a speculative glimpse on a putative mechanism of K(+)-induced transport activation. The structural data suggest that activation in BetP is crucially linked to its trimeric state involving an interaction network between several arginines and glutamates and aspartates. Here, we describe the effect of K(+)-induced activation on the specific ionic interaction sites in terminal domains and loops and on the protomer-protomer interactions within the trimer studied by ATR-FTIR spectroscopy. We suggest that arginine and aspartate and/or glutamate residues at the trimeric interface rearrange upon K(+)-induced activation, although they remain assembled in an interaction network. Our data propose a two-step mechanism comprising first a change in solvent exposure of charged residues and second a modification of their interaction sites in a partner-switching manner. FTIR reveals a higher α-helical content than expected from the X-ray structures that we attribute to the structurally unresolved N-terminal domain modulating regulation. In situ(1)H/(2)H exchange studies point towards an altered exposure of backbone regions to buffer solution upon activation, most likely due to conformational changes in both terminal domains, which further affects ionic interactions within the trimer.
    Biochimica et Biophysica Acta 01/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The secondary structure of the loop IIId domain in the RNA of hepatitis C virus (HCV) is well-conserved among different genotypes of HCV, which suggests that the nucleocapsid proteins may interact with the genome RNA through this loop structure. Using infrared spectroscopy, we monitored structural changes occurring in HCV core protein and loop IIId upon formation of nucleocapsid-like particles (NLPs). The protein secondary structure of these particles involves beta-sheet enrichment in relation to its protein monomer. The phosphodiester backbone vibrations of loop IIId reflect the predominant C3'-endo conformation of the riboses involved in the RNA A-form and reveal the packaging-imposed transition of the said RNA segments toward single-stranded structure within the NLPs. Intermolecular protein-nucleic acid contacts in these particles involve RNA phosphate groups and positively charged amino acid residues such as arginine and lysine. Two-dimensional correlation spectroscopic analysis of the spectra measured in the course of deuteration shows synchronous cross-peaks correlating two bands assigned to guanine and arginine side chain, which is consistent with the presence of guanine-arginine interactions in these NLPs. This is also supported by the kinetically favored formation of NLPs having HCV core protein and guanine-enriched synthetic oligonucleotides. We also found that these NPLs are fully permeable to water molecules.
    Biochemistry 06/2010; 49(23):4724-31. · 3.38 Impact Factor


Available from
Jan 23, 2015