Prion strain discrimination using luminescent conjugated polymers.

UniversitätsSpital Zürich, Institute of Neuropathology, Department of Pathology, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
Nature Methods (Impact Factor: 23.57). 01/2008; 4(12):1023-30. DOI: 10.1038/nmeth1131
Source: PubMed

ABSTRACT The occurrence of multiple strains of prions may reflect conformational variability of PrP(Sc), a disease-associated, aggregated variant of the cellular prion protein, PrP(C). Here we used luminescent conjugated polymers (LCPs), which emit conformation-dependent fluorescence spectra, for characterizing prion strains. LCP reactivity and emission spectra of brain sections discriminated among four immunohistochemically indistinguishable, serially mouse-passaged prion strains derived from sheep scrapie, chronic wasting disease (CWD), bovine spongiform encephalopathy (BSE), and mouse-adapted Rocky Mountain Laboratory scrapie prions. Furthermore, using LCPs we differentiated between field isolates of BSE and bovine amyloidotic spongiform encephalopathy, and identified noncongophilic deposits in prion-infected deer and sheep. We found that fibrils with distinct morphologies generated from chemically identical recombinant PrP yielded unique LCP spectra, suggesting that spectral characteristic differences resulted from distinct supramolecular PrP structures. LCPs may help to detect structural differences among discrete protein aggregates and to link protein conformational features with disease phenotypes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A new amphiphilic conjugated polythiophene derivative (PT-Boc) is synthesized via Suzuki coupling reaction. The amphiphilic characteristic makes it form nanoaggregates in water, in which hydrophobic moieties come together to form the inner core. The polymer shows good photostability and no toxicity to human lung epithelial (A549) cells even at a high concentration (100 μg mL(-1) ). It therefore meets the crucial requirement for cellular imaging and other biological applications. The anticancer drug cisplatin is used as a model, and is linked to polythiophene to obtain a conjugate 'PT-Pt' by coordinated interactions between cisplatin and the amine groups of the polythiophene side chain. The PT-Pt can be used for monitoring the cellular distribution of cisplatin by fluorescence microscopy. The amphiphilic polythiophene provides a platform for fluorescent imaging of drugs and biological molecules in living cells.
    Small 05/2011; 7(10):1464-70. · 7.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is associated with the deposition of β-amyloid (Aβ) plaques in the brain. In this issue, by cleverly processing patient samples, Lu et al. define a novel structural model of Aβ fibrils from AD brain, revealing surprising differences from in vitro fibrils. These findings may lead to structure-specific inhibitors and more selective amyloid-imaging methods.
    Cell 09/2013; 154(6):1182-4. · 31.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Fluorescent compounds capable of staining cells selectively without affecting their viability are gaining importance in biology and medicine. Recently, a new family of optical dyes, denoted luminescent conjugated oligothiophenes (LCOs), has emerged as an interesting class of highly emissive molecules for studying various biological phenomena. Properly functionalized LCOs have been utilized for selective identification of disease-associated protein aggregates and for selective detection of distinct cells. Herein, we present data on differential staining of various cell types, including cancer cells. The differential staining observed with newly developed pentameric LCOs is attributed to distinct side chain functionalities along the thiophene backbone. Employing flow cytometry and fluorescence microscopy we examined a library of LCOs for stainability of a variety of cell lines. Among tested dyes we found promising candidates that showed strong or moderate capability to stain cells to different extent, depending on target cells. Hence, LCOs with diverse imidazole motifs along the thiophene backbone were identified as an interesting class of agents for staining of cancer cells, whereas LCOs with other amino acid side chains along the backbone showed a complete lack of staining for the cells included in the study. Furthermore, for p-HTMI,a LCO functionalized with methylated imidazole moieties, the staining was dependent on the p53 status of the cells, indicating that the molecular target for the dye is a cellular component regulated by p53. We foresee that functionalized LCOs will serve as a new class of optical ligands for fluorescent classification of cells and expand the toolbox of reagents for fluorescent live imaging of different cells. © 2014 International Society for Advancement of Cytometry.
    Cytometry Part A 02/2014; · 3.71 Impact Factor