Article

Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses.

Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 52 Eoeun-dong, Yuseong-gu, Daejeon, Korea.
Transgenic Research (Impact Factor: 2.28). 09/2008; 17(4):705-15. DOI: 10.1007/s11248-007-9155-2
Source: PubMed

ABSTRACT In plants, nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes. In this study, we developed transgenic potato plants (Solanum tuberosum L. cv. Atlantic) expressing Arabidopsis NDPK2 (AtNDPK2) gene in cytosols under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SN plants) or enhanced CaMV 35S promoter (EN plants) and evaluated their tolerance to various environmental stress, including methyl viologen (MV)-mediated oxidative stress, high temperature, and salt stress. When 250 muM MV was sprayed to whole plants, plants expressing NDPK2 showed significantly an enhanced tolerance compared to non-transgenic (NT) plants. SN plants and EN plants showed 51% and 32% less visible damage than NT plants, respectively. Transcript level of AtNDPK2 gene and NDPK2 activity in SN plants following MV treatment well reflected the plant phenotype. Ascorbate peroxidase (APX) activity was also increased in MV-treated SN plants. In addition, SN plants showed enhanced tolerance to high temperature at 42 degrees C. The photosynthetic activity of SN plants after treatment of high temperature was decreased by about 10% compared to the plants grown at 25 degrees C, whereas that of NT plants declined by 30%. When treated with 80 mM NaCl onto the plantlets, both SN plants and EN plants also showed a significant reduced damage in root growth. These results indicate that overexpression of NDPK2 under the stress-inducible SWPA2 promoter might efficiently regulate the oxidative stress derived from various environmental stresses.

Download full-text

Full-text

Available from: Suk-Yoon Kwon, Dec 18, 2013
0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we generated and evaluated transgenic alfalfa plants (Medicago sativa L. cv. Xinjiang Daye) expressing the Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SN plants) to develop plants with enhanced tolerance to various abiotic stresses. We selected two SN plants (SN4 and SN7) according to the expression levels of AtNDPK2 and the enzyme activity of NDPK in response to methyl viologen (MV)-mediated oxidative stress treatment using leaf discs for further characterization. SN plants showed enhanced tolerance to high temperature, NaCl, and drought stress on the whole-plant level. When the plants were subjected to high temperature treatment (42°C for 24 h), the non-transgenic (NT) plants were severely wilted, whereas the SN plants were not affected because they maintained high relative water and chlorophyll contents. The SN plants also showed significantly higher tolerance to 250 mM NaCl and water stress treatment than the NT plants. In addition, the SN plants exhibited better plant growth through increased expression of auxin-related indole acetic acid (IAA) genes (MsIAA3, MsIAA5, MsIAA6, MsIAA7, and MsIAA16) under normal growth conditions compared to NT plants. The results suggest that induced overexpression of AtNDPK2 in alfalfa will be useful for increasing biomass production under various abiotic stress conditions.
    Plant Physiology and Biochemistry 09/2014; DOI:10.1016/j.plaphy.2014.08.025 · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes and auxin-responsive genes in plants. Previously, it was noted that the overexpression of Arabidopsis NDPK2 (AtNDPK2) under the control of an oxidative stress-inducible SWPA2 promoter in transgenic poplar (Populus alba P. tremular var. glandulosa) plants (referred to as SN plants) enhanced tolerance to oxidative stress and improved growth (Plant Biotechnol J 9: 34-347, 2011). In this study, growth of transgenic poplar was assessed under living modified organism (LMO) field conditions in terms of biomass in the next year. The growth of transgenic poplar plants increased in comparison with non-transgenic plants. The SN3 and SN4 transgenic lines had 1.6 and 1.2 times higher dry weight in stems than non-transgenic plants at 6 months after planting, respectively. Transgenic poplar also exhibited increased transcript levels of auxin-response genes such as IAA1, IAA2, IAA5 and IAA6. These results suggest that enhanced AtNDPK2 expression increases plant biomass in transgenic poplar through the regulation of auxin-response genes.
    09/2011; 38(3). DOI:10.5010/JPB.2011.38.3.228
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is one of the major causative factors for injury to plants exposed to environmental stresses. Plants have developed diverse defense mechanisms for scavenging oxidative stress-inducing molecules. The antioxidative enzyme 2-cysteine peroxiredoxin (2-Cys Prx) removes peroxides and protects the photosynthetic membrane from oxidative damage. In this study, transgenic potato (Solanum tuberosum L. cv. Atlantic) expressing At2-Cys Prx under control of the oxidative stress-inducible SWPA2 promoter or enhanced CaMV 35S promoter (referred to as SP and EP plants, respectively) was generated using Agrobacterium-mediated transformation. The transgenic plants were tested for tolerance to stress. Following treatment with 3 μM methyl viologen (MV), leaf discs from SP and EP plants showed approximately 33 and 15% less damage than non-transformed (NT) plants. When 300 μM MV was sprayed onto whole plants, the photosynthetic activity of SP plants decreased by 25%, whereas that of NT plants decreased by 60%. In addition, SP plants showed enhanced tolerance to high temperature at 42 °C. After treatment at high temperature, the photosynthetic activity of SP plants decreased by about 7% compared to plants grown at 25 °C, whereas it declined by 31% in NT plants. These results indicate that transgenic potato can efficiently regulate oxidative stress from various environmental stresses via overexpression of At2-Cys Prx under control of the stress-inducible SWPA2 promoter.
    Plant Physiology and Biochemistry 04/2011; 49(8):891-7. DOI:10.1016/j.plaphy.2011.04.001 · 2.35 Impact Factor