Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma.

Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Ribeirão Preto, Brasil.
Inflammation Research (Impact Factor: 2.14). 11/2007; 56(10):402-8. DOI: 10.1007/s00011-007-7005-6
Source: PubMed

ABSTRACT Eosinophils and cytokines are implicated in the pathogenesis of allergic diseases. In the present study, we investigate the anti-inflammatory effect of quercetin and isoquercitrin in a murine model of asthma.
BALB/c mice were immunized (ovalbumin/aluminum hydroxide, s. c.), followed by two intranasal ovalbumin challenges. From day 18 to day 22 after the first immunization, the mice received daily gavages of isoquercitrin (15 mg/kg) or quercetin (10 mg/kg). Dexamethasone (1 mg/kg, s. c.) was administered as a positive control. Leucocytes were analyzed in bronchoalveolar lavage fluid (BALF), blood and pulmonary parenchyma at 24 h after the last ovalbumin challenge. Interleukin-5 (IL-5) was analyzed in BALF and lung homogenates.
In animals receiving isoquercitrin or quercetin, eosinophil counts were lower in the BALF, blood and lung parenchyma. Neutrophil counts in blood and IL-5 levels in lung homogenate were lower only in isoquercitrin-treated mice. No alterations in mononuclear cell numbers were observed.
Quercetin and isoquercitrin are effective eosinophilic inflammation suppressors, suggesting a potential for treating allergies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diet and nutrition may be important modifiable risk factors for the development, progression and management of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). This review examines the relationship between dietary patterns, nutrient intake and weight status in obstructive lung diseases, at different life stages, from in-utero influences through childhood and into adulthood. In vitro and animal studies suggest important roles for various nutrients, some of which are supported by epidemiological studies. However, few well-designed human intervention trials are available to definitively assess the efficacy of different approaches to nutritional management of respiratory diseases. Evidence for the impact of higher intakes of fruit and vegetables is amongst the strongest, yet other dietary nutrients and dietary patterns require evidence from human clinical studies before conclusions can be made about their effectiveness.
    Nutrients 03/2015; 7(3):1618-1643. DOI:10.3390/nu7031618 · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Lavandula genus, which includes lavender (Lavandula angustifolia) and lavandin (L. angustifolia × Lavandula latifolia), is cultivated worldwide for its essential oils, which find applications in perfumes, cosmetics, food processing and, more recently, in aromatherapy products. The chemical composition of lavender and lavandin essential oils, usually produced by steam distillation from the flowering stems, is characterized by the presence of terpenes (e.g. linalool and linalyl acetate) and terpenoids (e.g. 1,8-cineole), which are mainly responsible for their characteristic flavour and their biological and therapeutic properties. Lavender and lavandin distilled straws, the by-products of oil extraction, were traditionally used for soil replenishment or converted to a fuel source. They are mineral- and carbon-rich plant residues and, therefore, a cheap, readily available source of valuable substances of industrial interest, especially aroma and antioxidants (e.g. terpenoids, lactones and phenolic compounds including coumarin, herniarin, α-bisabolol, rosmarinic and chlorogenic acids). Accordingly, recent studies have emphasized the possible uses of lavender and lavandin straws in fermentative or enzymatic processes involving various microorganisms, especially filamentous fungi, for the production of antimicrobials, antioxidants and other bioproducts with pharmaceutical and cosmetic activities, opening up new challenging perspectives in white biotechnology applications.
    Applied Microbiology and Biotechnology 03/2015; 99(8). DOI:10.1007/s00253-015-6511-7 · 3.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Asthma is an inflammatory condition characterized by airway hyperresponsiveness and chronic inflammation. The resolution of inflammation is an essential process to treat this condition. In this study we investigated the effect of Allium cepa L. extract (AcE) and quercetin (Qt) on cytokine and on smooth muscle contraction in vitro and its therapeutic potential in a murine model of asthma. Methods AcE was obtained by maceration of Allium cepa L. and it was standardized in terms of quercetin concentration using high performance liquid chromatography (HPLC). In vitro, using AcE 10, 100 or 1000 μg/ml or Qt 3.5, 7.5, 15 μg/ml, we measured the concentration of cytokines in spleen cell culture supernatants, and the ability to relax tracheal smooth muscle from A/J mice. In vivo, Blomia tropicalis (BT)-sensitized A/J mice were treated with AcE 100, 1000 mg/kg or 30 mg/kg Qt. We measured cell influx in bronchoalveolar lavage (BAL), eosinophil peroxidase (EPO) in lungs, serum levels of Bt-specific IgE, cytokines levels in BAL, and lung histology. Results We observed a reduction in the production of inflammatory cytokines, a relaxation of tracheal rings, and a reduction in total number of cells in BAL and EPO in lungs by treatment with AcE or Qt. Conclusion AcE and Qt have potential as antiasthmatic drugs, as they possess both immunomodulatory and bronchodilatory properties.
    DARU-JOURNAL OF FACULTY OF PHARMACY 02/2015; 23(1). DOI:10.1186/s40199-015-0098-5 · 1.11 Impact Factor