Article

Targeting selectins and selectin ligands in inflammation and cancer.

Harvard Skin Disease Research Center, Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Room 669, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
Expert Opinion on Therapeutic Targets (Impact Factor: 4.9). 12/2007; 11(11):1473-91. DOI: 10.1517/14728222.11.11.1473
Source: PubMed

ABSTRACT Inflammation and cancer metastasis are associated with extravasation of leukocytes or tumor cells from blood into tissue. Such movement is believed to follow a coordinated and sequential molecular cascade initiated, in part, by the three members of the selectin family of carbohydrate-binding proteins: E-selectin (CD62E), L-selectin (CD62L) and P-selectin (CD62P). E-selectin is particularly noteworthy in disease by virtue of its expression on activated endothelium and on bone-skin microvascular linings and for its role in cell rolling, cell signaling and chemotaxis. E-selectin, along with L- or P-selectin, mediates cell tethering and rolling interactions through the recognition of sialo-fucosylated Lewis carbohydrates expressed on structurally diverse protein-lipid ligands on circulating leukocytes or tumor cells. Major advances in understanding the role of E-selectin in inflammation and cancer have been advanced by experiments assaying E-selectin-mediated rolling of leukocytes and tumor cells under hydrodynamic shear flow, by clinical models of E-selectin-dependent inflammation, by mice deficient in E-selectin and by mice deficient in glycosyltransferases that regulate the binding activity of E-selectin ligands. Here, the authors elaborate on how E-selectin and its ligands may facilitate leukocyte or tumor cell recruitment in inflammatory and metastatic settings. Antagonists that target cellular interactions with E-selectin and other members of the selectin family, including neutralizing monoclonal antibodies, competitive ligand inhibitors or metabolic carbohydrate mimetics, exemplify a growing arsenal of potentially effective therapeutics in controlling inflammation and the metastatic behavior of cancer.

0 Followers
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cell surface represents the interface between the cell and its environment. As such, the cell surface controls cell–cell interactions and functions such as adhesion and migration, and will transfer external cues to regulate processes such as survival, death, and differentiation. Redefining the cell surface by temporarily (or permanently) modifying the molecular landscape of the plasma membrane affects the way in which the cell interacts with its environment and influences the information that is relayed into the cell along downstream signaling pathways. This chapter outlines the role of key enzymes, the glycosyltransferases, in posttranslationally modifying proteins and lipids to fine-tune cells, ability to migrate. These enzymes are critical in controlling the formation of a platform structure, sialyl Lewis x (sLex), on circulating cells that plays a central role in the recognition and recruitment by selectin counter receptors on endothelial cells that line blood vessels of tissues throughout the body. By developing methods to manipulate the activity of these enzymes and hence the cell surface structures that result, treatments can be envisioned that direct the migration of therapeutic cells to specific locations throughout the body and also to inhibit metastasis of detrimental cells such as circulating tumor cells.
    Micro- and Nanoengineering of the Cell Surface, Edited by J.M Karp, W Zhao, 01/2014: chapter Cell Surface Enzymatic Engineering-Based Approaches to Improve Cellular Therapies: pages 175-213; Elsevier., ISBN: 978-1-4557-3146-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently we showed that tetrasaccharide selectin ligand SiaLe(X) provided targeted delivery of liposomes loaded in the bilayer with melphalan lipophilic prodrug to tumour endothelium followed by severe injury of tumour vessels in a Lewis lung carcinoma model. Here, we study the impact of SiaLe(X) ligand on the interactions of the liposomes with human umbilical vein endothelial cells (HUVEC) using flow cytometry, spectrofluorimetry and confocal microscopy. Liposomes composed of egg phosphatidylcholine/yeast phosphatidylinositol/1,2-dioleoyl glycerol ester of melphalan, 8:1:1, by mol, and varying percent of lipophilic SiaLe(X)-conjugate were labelled with BODIPY-phosphatidylcholine. The increase in SiaLe(X) content in liposomes led to a proportional increase in their uptake by cytokine-activated cells as opposed to non-activated HUVEC: for 10%-SiaLe(X) liposomes, binding avidity and overall accumulation increased 14- and 6-fold, respectively. The early stages of intracellular traffic of targeted liposomes in the activated cells were monitored by co-localisation with the trackers of organelles. Endocytosis of SiaLe(X)-liposomes occurred mostly via clathrin-independent pathways, which does not contradict the available literature data on E-selectin localisation in the plasma membrane. Using dual fluorescence labelling, with rhodamine labelled phospholipid and calcein encapsulated at self-quenching concentration, we found that SiaLe(X)-liposomes undergo rapid (within minutes) internalisation by activated HUVEC accompanied by the disruption of liposomes; non-activated cells consumed negligible dose of liposomes during at least 1.5h. Our data evidence the selective effect of SiaLe(X)-formulations on activated endothelial cells and indicate their potential to intracellular delivery of melphalan lipophilic prodrug. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Biomembranes 01/2015; 1848(5). DOI:10.1016/j.bbamem.2015.01.016 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A-nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells.
    Proceedings of the National Academy of Sciences 03/2015; 112(13). DOI:10.1073/pnas.1417273112 · 9.81 Impact Factor

Preview

Download
0 Downloads
Available from