Article

In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions.

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2007; 104(48):19017-22. DOI: 10.1073/pnas.0709524104
Source: PubMed

ABSTRACT Mitotic chromosome motions are driven by microtubules (MTs) and associated proteins that couple kinetochores to MT ends. A good coupler should ensure a high stability of attachment, even when the chromosome changes direction or experiences a large opposing force. The optimal coupler is also expected to be efficient in converting the energy of MT depolymerization into chromosome motility. As was shown years ago, a "sleeve"-based, chromosome-associated structure could, in principle, couple MT dynamics to chromosome motion. A recently identified kinetochore complex from yeast, the "Dam1" or "DASH" complex, may function as an encircling coupler in vivo. Some features of the Dam1 ring differ from those of the "sleeve," but whether these differences are significant has not been examined. Here, we analyze theoretically the biomechanical properties of encircling couplers that have properties of the Dam1/DASH complex, such as its large diameter and inward-directed extensions. We demonstrate that, if the coupler is modeled as a wide ring with links that bind the MT wall, its optimal performance is achieved when the linkers are flexible and their binding to tubulin dimers is strong. The diffusive movement of such a coupler is limited, but MT depolymerization can drive its motion via a "forced walk," whose features differ significantly from those of the mechanisms based on biased diffusion. Our analysis identifies key experimental parameters whose values should determine whether the Dam1/DASH ring moves via diffusion or a forced walk.

0 Followers
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kinetochores assemble on centromeric DNA and present arrays of proteins that attach directly to the dynamic ends of microtubules. Kinetochore proteins coordinate at the microtubule interface through oligomerization, but how oligomerization contributes to kinetochore function has remained unclear. Here, using a combination of biophysical assays and live-cell imaging, we find that oligomerization of the Dam1 complex is required for its ability to form microtubule attachments that are robust against tension in vitro and in vivo. An oligomerization-deficient Dam1 complex that retains wild-type microtubule binding activity is primarily defective in coupling to disassembling microtubule ends under mechanical loads applied by a laser trap in vitro. In cells, the oligomerization-deficient Dam1 complex is unable to support stable bipolar alignment of sister chromatids, indicating failure of kinetochore-microtubule attachments under tension. We propose that oligomerization is an essential and conserved feature of kinetochore components that is required for accurate chromosome segregation during mitosis.
    Nature Communications 09/2014; 5:4951. DOI:10.1038/ncomms5951 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent experiments revealing nanoscale electrostatic force generation at kinetochores for chromosome motions have prompted models for interactions between positively charged molecules in kinetochores and negative charge at and near the plus ends of microtubules. A clear picture of how kinetochores and centrosomes establish and maintain a dynamic coupling to microtubules for force generation during the complex motions of mitosis remains elusive. The molecular cell biology paradigm requires that specific molecules, or molecular geometries, for polar force generation be identified. While progress has been made regarding explanations of kinetochore-based chromosome motility, molecular machinery for chromosome poleward movements at centrosomes has yet to be identified. The present work concerns polar generation of poleward force in terms of experimentally known electric charge distributions at microtubule minus ends and centrosomes interacting over nanometer distances.
    Cell Division 12/2014; 9:5. DOI:10.1186/s13008-014-0005-3 · 2.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules, the primary components of the chromosome segregation machinery, are stabilized by longitudinal and lateral non-covalent bonds between the tubulin subunits. However, the thermodynamics of these bonds and the microtubule physico-chemical properties are poorly understood. Here, we explore the biomechanics of microtubule polymers using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close match between the simulated and experimental force-deformation spectra enabled us to correlate the microtubule biomechanics with dynamic structural transitions at the nanoscale. Our mechanical testing revealed that the compressed MT behaves as a system of rigid elements interconnected through a network of lateral and longitudinal elastic bonds. The initial regime of continuous elastic deformation of the microtubule is followed by the transition regime, during which the microtubule lattice undergoes discrete structural changes, which include first the reversible dissociation of lateral bonds followed by irreversible dissociation of the longitudinal bonds. We have determined the free energies of dissociation of the lateral (6.9±0.4 kcal/mol) and longitudinal (14.9±1.5 kcal/mol) tubulin-tubulin bonds. These values in conjunction with the large flexural rigidity of tubulin protofilaments obtained (18,000- 26,000 pN•nm2), support the idea that the disassembling microtubule is capable of generating a large mechanical force to move chromosomes during cell division. Our computational modeling offers a comprehensive quantitative platform to link molecular tubulin characteristics with the physiological behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration of biomechanical properties of other cytoskeletal and multiprotein assemblies.
    Journal of the American Chemical Society 11/2014; 136(49). DOI:10.1021/ja506385p · 11.44 Impact Factor

Full-text (2 Sources)

Download
30 Downloads
Available from
Jun 4, 2014