Enhancing lignan biosynthesis by over-expressing pinoresinol lariciresinol reductase in transgenic wheat.

Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA.
Molecular Nutrition & Food Research (Impact Factor: 4.31). 12/2007; 51(12):1518-26. DOI: 10.1002/mnfr.200700233
Source: PubMed

ABSTRACT Lignans are phenylpropane dimers that are biosynthesized via the phenylpropanoid pathway, in which pinoresinol lariciresinol reductase (PLR) catalyzes the last steps of lignan production. Our previous studies demonstrated that the contents of lignans in various wheat cultivars were significantly associated with anti-tumor activities in APC(Min) mice. To enhance lignan biosynthesis, this study was conducted to transform wheat cultivars ('Bobwhite', 'Madison', and 'Fielder', respectively) with the Forsythia intermedia PLR gene under the regulatory control of maize ubiquitin promoter. Of 24 putative transgenic wheat lines, we successfully obtained 3 transformants with the inserted ubiquitin-PLR gene as screened by PCR. Southern blot analysis further demonstrated that different copies of the PLR gene up to 5 were carried out in their genomes. Furthermore, a real-time PCR indicated approximately 17% increase of PLR gene expression over the control in 2 of the 3 positive transformants at T(0) generation. The levels of secoisolariciresinol diglucoside, a prominent lignan in wheat as determined by HPLC-MS, were found to be 2.2-times higher in one of the three positive transgenic sub-lines at T(2 )than that in the wild-type (117.9 +/- 4.5 vs. 52.9 +/- 19.8 mug/g, p <0.005). To the best of our knowledge, this is the first study that elevated lignan levels in a transgenic wheat line has been successfully achieved through genetic engineering of over-expressed PLR gene. Although future studies are needed for a stably expression and more efficient transformants, the new wheat line with significantly higher SDG contents obtained from this study may have potential application in providing additive health benefits for cancer prevention.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a previous study, we reported the production of the exogenous lignan, sesamin, using the Forsythia koreana transgenic cells (CPi-Fk cells) in which an exogenous sesamin-synthase CYP81Q1 is stably expressed while an endogenous pinoresinol-lariciresinol reductase is suppressed by RNA interference. Here, we present the effects of light on the production of sesamin and an endogenous lignan pinoresinol which is a precursor of sesamin in CPi-Fk cells. CPi-Fk cells showed a 2.3-fold, 2.7-fold, or 1.6-fold increase in sesamin production after two-week irradiation with white fluorescent, blue LED, or red LED light, respectively, compared with the level obtained under the dark condition. Likewise, CPi-Fk cells showed an approximately 1.5 to 3.0-fold increase in pinoresinol (aglycone and glucosides) production. Furthermore, expression of the pinoresinol-glucosylating enzyme UGT71A18 was suppressed in CPi-Fk cells under blue or red light. Considering that white fluorescent light contains the blue wavelength and that CYP81Q1 fails to convert pinoresinol glucosides to sesamin, it is concluded that blue light plays a major role in the up-regulation of the production of sesamin by CPi-Fk via an enhancement of the production of pinoresinol aglycone and a reduction of UGT71A18. This is the first report on the elevation of lignan biosynthesis by light.
    Plant Biotechnology 01/2011; 28:331-337. · 0.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While a meta-analysis is necessary to test the claim that the logic dominates the majority of studies, most studies by academic scholars on thinking and actions by executives appear to rely on cross-sectional surveys that use self-reports by executives via scaled (e.g., strongly disagree to strongly agree) instruments whereby one executive per firm completes the instrument and data are collected for 50–500 firms. Useable response rates in these studies are almost always below 30% of the distributions of the surveys. While these studies are sometimes worthwhile for learning how respondents assess concepts and relationships among concepts, Rong and Wilkinson’s perspective on the severe limits to the value of such studies rings true: such surveys reveal more about executives’ sensemaking processes than the actual processes. The limitations of using one-shot, one-person-per-firm, self-reports as valid indicators of causal relationships of actual processes are so severe that academics should do more than think twice before using such surveys as the main method for collecting data – if scholars seek to understand and describe actual processes additional methods are necessary for data collection. The relevant literature includes several gems of exceptionally high quality, validity, and usefulness in the study of actual processes; identifying these studies is a useful step toward reducing the reliance on one-shot self-report surveys.
    Australasian Marketing Journal (AMJ) 01/2011; 19(3):153-156.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pinoresinol reductase and pinoresinol/lariciresinol reductase play important roles in an early step of lignan biosynthesis in plants. The activities of both enzymes have also been detected in bacteria. In this study, pinZ, which was first isolated as a gene for bacterial pinoresinol reductase, was constitutively expressed in Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Higher reductive activity toward pinoresinol was detected in the resultant transgenic plants but not in wild-type plant. Principal component analysis of data from untargeted metabolome analyses of stem, root, and leaf extracts of the wild-type and two independent transgenic lines indicate that pinZ expression caused dynamic metabolic changes in stems, but not in roots and leaves. The metabolome data also suggest that expression of pinZ influenced the metabolisms of lignan and glucosinolates but not so much of neolignans such as guaiacylglycerol-8-O-4'-feruloyl ethers. In-depth quantitative analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that amounts of pinoresinol and its glucoside form were markedly reduced in the transgenic plant, whereas the amounts of glucoside form of secoisolariciresinol in transgenic roots, leaves, and stems increased. The detected levels of lariciresinol in the transgenic plant following β-glucosidase treatment also tended to be higher than those in the wild-type plant. Our findings indicate that overexpression of pinZ induces change in lignan compositions and has a major effect not only on lignan biosynthesis but also on biosynthesis of other primary and secondary metabolites.
    Applied Microbiology and Biotechnology 07/2014; · 3.69 Impact Factor


Available from