Influence of GSTM1 null and low repair XPC PAT+ on anti-B[a]PDE-DNA adduct in mononuclear white blood cells of subjects low exposed to PAHs through smoking and diet

Occupational Health Section, Department of Environmental Medicine and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis (Impact Factor: 3.68). 02/2008; 638(1-2):195-204. DOI: 10.1016/j.mrfmmm.2007.10.004
Source: PubMed


The influence of low-activity NER genotypes (XPC PAT-/+, XPA-A23G, XPD Asp312Asn, XPD Lys751Gln) and GSTM1 (active or null) was evaluated on anti-benzo[a]pyrene diol epoxide-(B[a]PDE)-DNA adduct formed in the lymphocyte plus monocyte fraction (LMF). The sample population consisted of 291 healthy subjects with low exposure to polycyclic aromatic hydrocarbons (PAHs) (B[a]P) through their smoking (n=126 smokers) or dietary habits (n=165 non-smokers with high (>or=52 times/year) consumption of charcoaled meat or pizza). The bulky anti-B[a]PDE-DNA adduct levels were detected by HPLC/fluorescence analysis and genotypes by PCR. Anti-B[a]PDE-DNA was present (>or=0.5 adducts/10(8) nucleotides) in 163 (56%) subjects (median (range) 0.77 (0.125-32.0) adducts/10(8) nucleotides), with smokers showing a significantly higher adduct level than non-smokers with high consumption of PAH-rich meals (P<0.01). Our exposed-sample population with unfavourable XPC PAT+/- or +/+ and GSTM1 null genotypes has the significantly highest adduct level (P<0.01). Taking into account tobacco smoke and diet as sources of exposure to B[a]P, low-activity XPC PAT+ shows a major role in smokers (P<0.05) and GSTM1 null in non-smokers with frequent consumption of PAH-rich meals (P<0.01). The modulation of anti-B[a]PDE-DNA adduct in the LMF by GSTM1 null and low-activity XPC PAT+ polymorphisms may be considered as potential genetic susceptibility factors that can modify individual responses to low PAH (B[a]P) genotoxic exposure, with the consequent risk of cancer in the general population.

4 Reads
  • Source
    • "The formation of reactive metabolites of AAs and PAHs and their binding to DNA to give unrepaired/stable adducts, all modulated by genetic polymorphisms of metabolic and DNA repair enzymes, are considered critical events alongside the theoretical pathway that links exposure to BC [5]. “Bulky” DNA adduct measurement has been therefore considered an integrated marker of both exposure to aromatic compounds and ability to activate carcinogens and repair DNA damage [6], [7]. Significantly higher levels of aromatic DNA adducts have been found in the bladder cancer biopsies from smokers [8], [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA adducts are considered an integrate measure of carcinogen exposure and the initial step of carcinogenesis. Their levels in more accessible peripheral blood lymphocytes (PBLs) mirror that in the bladder tissue. In this study we explore whether the formation of PBL DNA adducts may be associated with bladder cancer (BC) risk, and how this relationship is modulated by genetic polymorphisms, environmental and occupational risk factors for BC. These complex interrelationships, including direct and indirect effects of each variable, were appraised using the structural equation modeling (SEM) analysis. Within the framework of a hospital-based case/control study, study population included 199 BC cases and 213 non-cancer controls, all Caucasian males. Data were collected on lifetime smoking, coffee drinking, dietary habits and lifetime occupation, with particular reference to exposure to aromatic amines (AAs) and polycyclic aromatic hydrocarbons (PAHs). No indirect paths were found, disproving hypothesis on association between PBL DNA adducts and BC risk. DNA adducts were instead positively associated with occupational cumulative exposure to AAs (p = 0.028), whereas XRCC1 Arg 399 (p<0.006) was related with a decreased adduct levels, but with no impact on BC risk. Previous findings on increased BC risk by packyears (p<0.001), coffee (p<0.001), cumulative AAs exposure (p = 0.041) and MnSOD (p = 0.009) and a decreased risk by MPO (p<0.008) were also confirmed by SEM analysis. Our results for the first time make evident an association between occupational cumulative exposure to AAs with DNA adducts and BC risk, strengthening the central role of AAs in bladder carcinogenesis. However the lack of an association between PBL DNA adducts and BC risk advises that these snapshot measurements are not representative of relevant exposures. This would envisage new scenarios for biomarker discovery and new challenges such as repeated measurements at different critical life stages.
    PLoS ONE 04/2014; 9(4):e94566. DOI:10.1371/journal.pone.0094566 · 3.23 Impact Factor
  • Source
    • "The integrated measure of alcohol drinking (drink-unit per year of exposure [drink-years]) and smoking history (pack-years) for abusers was also collected. Individuals with high dietary intake of genotoxins (particularly polycyclic aromatic hydrocarbons) were those who reported consumption of charcoaled meat or pizza more than once a week and individuals with indoor exposure were those who reported at least one of several exposure sources (i.e., use of fireplace, coal or wood-stove as heating at home, or passive exposure to tobacco smoke) as previously described (Pavanello et al., 2008). We defined participants with jobs at high risk of accident as those with occupations in a high-risk category, according to Italian regulations covering alcohol and related problems (Magnavita et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Regular and irregular abuse of alcohol are global health priorities associated with diseases at multiple sites, including cancer. Mechanisms of diseases induced by alcohol are closely related to its metabolism. Among conventional markers of alcohol abuse, the mean corpuscular volume (MCV) of erythrocytes is prognostic of alcohol-related cancer and its predictivity increases when combined with functional polymorphisms of alcohol dehydrogenase (ADH1B [rs1229984] and ADH1C [rs698]) and the mitochondrial aldehyde dehydrogenase (ALDH2 [rs671]). Whether these genetic variants can influence abuse in alcohol drinking and MCV has never been examined in drunk-driving traffic offenders. We examined 149 drunk drivers, diagnosed as alcohol abusers according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth edition Text Revision (DSM-IV-TR) and enrolled in a probation program, and 257 social drinkers (controls), all Caucasian males. Alcohol intake was assessed according to self-reported drink-units/d and MCV unadjusted and adjusted for age, smoking, and body mass index. Multivariable models were used to compute MCV adjusted means. Genotype analyses were performed by PCR on DNA from blood. The adjusted MCV mean was higher in drunk-driving abusers than in controls (92 vs. 91fL; P<.0001) and increased with the number of drink-units/d in both abusers and controls (P-trend=.0316 and .0089) already at intermediate quantities (0-1 vs. 2-4 drink-units/d: P=.054 and .024). Carriers of the common ADH1B*1/*1 (rs1229984) genotype were more likely to be drunk-driving abusers (P=.008), reported higher drink-units/d (P=.0126), and had larger MCV (P=.035). The rs698 ADH1C and rs671 ALDH2 polymorphisms were not associated with MCV. ADH1B*1/*1 polymorphism is significantly associated with being a drunk-driving abuser, higher alcohol drinking, and MCV enlargement. This suggests that drunk drivers with augmented MCV modulated by the alcohol metabolic ADH1B*1/*1 genotype may be at higher risk of driving incapability and of alcohol-related cancer.
    Alcohol (Fayetteville, N.Y.) 09/2011; 46(1):61-8. DOI:10.1016/j.alcohol.2011.08.009 · 2.01 Impact Factor

Show more

Similar Publications