Article

Polyisoprenol specificity in the Campylobacter jejuni N-linked glycosylation pathway.

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
Biochemistry (Impact Factor: 3.38). 01/2008; 46(50):14342-8. DOI: 10.1021/bi701956x
Source: PubMed

ABSTRACT Campylobacter jejuni contains a general N-linked glycosylation pathway in which a heptasaccharide is sequentially assembled onto a polyisoprenyl diphosphate carrier and subsequently transferred to the asparagine side chain of an acceptor protein. The enzymes in the pathway function at a membrane interface and have in common amphiphilic membrane-bound polyisoprenyl-linked substrates. Herein, we examine the potential role of the polyisoprene component of the substrates by investigating the relative substrate efficiencies of polyisoprene-modified analogues in individual steps of the pathway. Chemically defined substrates for PglC, PglJ, and PglB are prepared via semisynthetic approaches. The substrates included polyisoprenols of varying length, double bond geometry, and degree of saturation for probing the role of the hydrophobic polyisoprene in substrate specificity. Kinetic analysis reveals that all three enzymes exhibit distinct preferences for the polyisoprenyl carrier whereby cis-double bond geometry and alpha-unsaturation of the native substrate are important features, while the precise polyisoprene length may be less critical. These findings suggest that the polyisoprenyl carrier plays a specific role in the function of these enzymes beyond a purely physical role as a membrane anchor. These studies underscore the potential of the C. jejuni N-linked glycosylation pathway as a system for investigating the biochemical and biophysical roles of polyisoprenyl carriers common to prokaryotic and eukaryotic glycosylation.

0 Bookmarks
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oligosaccharyltransferases (OTases) are enzymes that catalyze the transfer of an oligosaccharide from a lipid carrier to an acceptor molecule, commonly a protein. OTases are classified as N-OTases and O-OTases, depending on the nature of the glycosylation reaction. The N-OTases catalyze the glycan transfer to amide groups in asparagines in a reaction named N-linked glycosylation. The O-OTases are responsible for protein O-linked glycosylation, which involves the attachment of glycans to hydroxyl groups of serine or threonine residues. These enzymes exhibit a relaxed specificity, being able to transfer a variety of glycan structures to different protein acceptors. This property confers OTases with great biotechnological potential as these enzymes can produce glycoconjugates relevant to the pharmaceutical industry. Furthermore, OTases are thought to be involved in pathogenesis mechanisms. Several aspects of the functionality of OTases are not fully understood. In this work we developed a novel approach to perform kinetic studies on PglL, the O-OTase from Neisseria meningitidis. We investigated the importance of the acyl moiety of the lipid glycan donor substrate on the functionality of PglL by testing efficiency of glycosylation reaction using synthetic substrates carrying the same glycan structure but different acyl moieties. We found that PglL can function with many lipids as glycan donors, although the length and the conformation of the lipid moiety significantly influenced the catalytic efficiency. Interestingly, PglL was also able to transfer a monosaccharide employing its nucleotide-activated form, acting as a Leloir glycosyltransferase. These results provide new insights on the function and the evolution of the oligosaccharyltransferases.
    Journal of Biological Chemistry 03/2013; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Gram-negative, opportunistic pathogen Acinetobacter baumannii has recently captured headlines due to its ability to circumvent current antibiotic therapies. Herein we show that the multi-drug resistant (MDR) AYE strain of A. baumannii contains a gene locus that encodes three enzymes responsible for the biosynthesis of the highly-modified bacterial nucleotide sugar, UDP-N,N'-diacetylbacillosamine (UDP-diNAcBac). Previously, this UDP-sugar has been implicated in the pgl pathway of Campylobacter jejuni. Here we report the overexpression, purification, and biochemical characterization of the A. baumannii enzymes WeeK, WeeJ, and WeeI that are responsible for the production of UDP-diNAcBac. We also demonstrate the function of the phosphoglycosyltransferase (WeeH), which transfers the diNAcBac moiety to undecaprenyl-phosphate. UDP-diNAcBac biosynthesis in A. baumannii is also directly compared to the homologous pathways in the pathogens C. jejuni and Neisseria gonorrhoeae. This work demonstrates for the first time the ability of A. baumannii to generate the highly-modified, UDP-diNAcBac nucleotide sugar found previously in other bacteria adding to the growing list of pathogens that assemble glycoconjugates including bacillosamine. Additionally, characterization of these pathway enzymes highlights the opportunity for investigating the significance of highly-modified sugars in bacterial pathogenesis.
    Archives of Biochemistry and Biophysics 06/2013; · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein glycosylation is widespread throughout all three domains of life. Bacterial protein N-glycosylation and its application to engineering recombinant glycoproteins continue to be actively studied. Here we focus on advances made in the last two years including the characterization of novel bacterial N-glycosylation pathways, examination of pathway enzymes and evolution, biological roles of protein modification in the native host, and exploitation of the N-glycosylation pathways to create novel vaccines and diagnostics.
    Journal of Biological Chemistry 01/2013; · 4.65 Impact Factor

Full-text

View
0 Downloads
Available from