Article

Microbial metabolism of reduced phosphorus compounds.

Department of Biological Sciences, California State University, Chico, California 95928-0515, USA.
Annual Review of Microbiology (Impact Factor: 13.02). 02/2007; 61:379-400. DOI: 10.1146/annurev.micro.61.080706.093357
Source: PubMed

ABSTRACT The field of bacterial phosphorus (P) metabolism has undergone a significant transformation in the past decade owing to the elucidation of widespread and diverse pathways for the metabolism of reduced P compounds. The characterization of these pathways dramatically changes the current and narrow view of P metabolism and our understanding of the forms in which P is produced and available in the environment. In this review, recent investigations into the biochemical pathways and molecular genetics of reduced P metabolism in bacteria are discussed. Particular attention is paid to recently elucidated metabolic reactions and the genetic characterization of biosynthesis of organic reduced P compounds and to the pathways for oxidation of the inorganic reduced P compounds hypophosphite and phosphite.

0 Followers
 · 
157 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PhnJ from the C-P lyase complex catalyzes the cleavage of the carbon-phosphorus bond in ribose-1-phosphonate-5-phosphate (PRPn) to produce methane and ribose-1,2-cyclic-phosphate-5-phosphate (PRcP). This protein is a novel radical SAM enzyme that uses glycyl and thiyl radicals as reactive intermediates in the proposed reaction mechanism. The overall reaction is initiated with the reductive cleavage of S-adenosylmethionine (SAM) by a reduced [4Fe-4S]1+-cluster to form an Ado-CH2∙ radical intermediate. This intermediate abstracts the proR hydrogen from Gly-32 of PhnJ to form Ado-CH3 and a glycyl radical. In the next step, there is hydrogen atom transfer from Cys-272 to the Gly-32 radical to generate a thiyl radical. The thiyl radical attacks the phosphorus center of the substrate, PRPn, to form a transient thiophosphonate radical intermediate. This intermediate collapses via homolytic C-P bond cleavage and hydrogen atom transfer from the proS hydrogen of Gly-32 to produce a thiophosphate intermediate, methane, and a radical intermediate at Gly-32. The final product, PRcP, is formed by nucleophilic attack of the C2-hydroxyl on the transient thiophosphate intermediate. This reaction regenerates the free thiol group of Cys-272. After hydrogen atom transfer from Cys-272 to the Gly-32 radical, the entire process is repeated with another substrate molecule without the use of another molecule of SAM or involvement from the [4Fe-4S]-cluster again.
    12/2014; DOI:10.1016/j.pisc.2014.12.006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphite is an important intermediate of the phosphorus cycle. Its life in environment is related to its oxidation rate. This paper investigated the photooxidation of phosphite in aqueous solution in the presence of ferric and oxalate ions under a Xe lamp. The photooxidation of phosphite followed pseudo-first-order reaction kinetics. The kinetics constant of 100 μmol L -1 phosphite was 0.0039 min-1 at pH 3 and Fe(III)/Ox 10.0/100.0 μmol L-1. The photooxidation was dependent upon the pH values, phosphite/ferric/oxalate concentration, and light intensity. The decrease of phosphite coincided with the increase of phosphate. The addition of 2-proponal, NaN3 or furfuryl alcohol inhibited the photooxidation of phosphite, which indicated that the yielded reactive oxygen species played an important role in the oxidation of phosphite. The results contribute not only to predict the longevity of phosphite in the aqueous solutions, but also to understand the transfer of phosphite in P cycle.
    Chemical Engineering Journal 02/2015; 269. DOI:10.1016/j.cej.2015.01.113 · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RESUMEN El fósforo (P) es un elemento esencial para la vida, por lo cual entender los mecanismos que permiten su disponibilidad en el suelo es prioritario. Debido a la complejidad de la dinámica de este nutriente, aún existen varios procesos que no están claramente entendidos, principalmente en los ecosistemas oligotróficos. En la presente revisión se analiza literatura relacionada con procesos involucrados en la disponibilidad del P, dándole énfasis al papel de las bacterias. La forma química disponible del P es el ortofosfato, pero por su alta reactividad y demanda de la biota, esta forma es rápidamente disminuida de la solución del suelo. Por lo que es necesario que la biota adquiera este elemento de otras formas químicas. Entre ellas, las formas orgánicas representan la principal fuente de este nutriente mediante la mineralización bioquímica producto principalmente de la comunidad bacteriana del suelo. Entre los compuestos organofosforados, los ésteres de fosfatos son los más fáciles de mineralizar, por la poca demanda energética en la producción de las enzimas involucradas en dicho proceso. Por otro lado, la mineralización de los fosfonatos puede representar una fuente alternativa de P disponible, a pesar de que se habíaconsiderado que esta forma química no era accesible por la complejidad de sus moléculas. En general, 1 y Felipe García-Oliva 2 mineralizan compuestos orgánicos con demandas energéticas diferentes (fosfohidrolasas, fosfonatasas y C-P liasas), además de la presencia de transportadores específicos de membrana y la disponibilidad de C como fuente de energía. Aún faltan estudios integrados que permitan elucidar el movimiento del P en los ecosistemas y cómo esto puede ser controlado y llevado a cabo por las bacterias que habitan en el suelo. Palabras clave: fosfatasa, fosfonatasa, ésteres, fertilidad, fosfonatos.