Article

HIV-1 p17 binds heparan sulfate proteoglycans to activated CD4(+) T cells.

Institute of Microbiology, University of Brescia Medical School, Brescia, Italy.
Virus Research (Impact Factor: 2.75). 04/2008; 132(1-2):25-32. DOI: 10.1016/j.virusres.2007.10.006
Source: PubMed

ABSTRACT We have previously shown that HIV-1 p17 binds to activated peripheral blood mononuclear cells and enhances secretion of pro-inflammatory cytokines, but we were unable to define a ligand on activated cells. In this work we evaluate the hypothesis that HIV-1 p17 may be a heparin/heparan sulfate-binding protein. HIV-1 p17 contains C- and N-terminal sequences with positively charged residues and a consensus cluster for heparin binding. We demonstrated by affinity chromatography that HIV-1 p17 binds strongly to heparin-agarose at physiological pH. Soluble heparins and heparan sulfate but not chondroitin 4-sulfate and dextran sulfate inhibit binding of HIV-1 p17 to heparin solid phase and to activated CD4(+) T cells. Furthermore the inhibition of cell sulfatation by chlorate treatment completely counteracts HIV-1 p17 binding to activated cells. These results indicate for the first time that HIV-1 p17 can be ascribed to the heparin binding protein family and suggest that this interaction might play a key role in the ability of the protein to induce an inflammatory effect on activated cells.

0 Bookmarks
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD8+ T cells play a key role in the in vivo control of HIV-1 replication via their cytolytic activity as well as their ability to secrete non-lytic soluble suppressive factors. Although the chemokines that naturally bind CCR5 (CCL3/MIP-1α, CCL4/MIP- 1β, CCL5/RANTES) are major components of the CD8-derived anti-HIV activity, evidence indicates the existence of additional, still undefined, CD8-derived HIV-suppressive factors. Here, we report the characterization of a novel anti-HIV chemokine, XCL1/lymphotactin, a member of the C-chemokine family that is produced primarily by activated CD8+ T cells and behaves as a metamorphic protein, interconverting between two structurally distinct conformations (classic and alternative). We found that XCL1 inhibits a broad spectrum of HIV-1 isolates, irrespective of their coreceptor-usage phenotype. Experiments with stabilized variants of XCL1 demonstrated that HIV-1 inhibition requires access to the alternative, all-β conformation, which interacts with proteoglycans but does not bind/activate the specific XCR1 receptor, while the classic XCL1 conformation is inactive. HIV-1 inhibition by XCL1 was shown to occur at an early stage of infection, via blockade of viral attachment and entry into host cells. Analogous to the recently described anti-HIV effect of the CXC chemokine CXCL4/PF4, XCL1-mediated inhibition is associated with direct interaction of the chemokine with the HIV-1 envelope. These results may open new perspectives for understanding the mechanisms of HIV-1 control and reveal new molecular targets for the design of effective therapeutic and preventive strategies against HIV-1.
    PLoS Pathogens 12/2013; 9(12):e1003852. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide) binds to glycosaminoglycans (GAGs) and has been shown to influence their function, and the function of proteoglycans (complexes of GAGs linked to a core protein). T cells synthesize, secrete and express GAGs and proteoglycans which are involved in several aspects of T cell function. However, there are as yet no studies on the effect of GAG-binding agents such as surfen on T cell function. In this study, surfen was found to influence murine T cell activation. Doses between 2.5 and 20μM produced a graduated reduction in the proliferation of T cells activated with anti-CD3/CD28 coated T cell expander beads. Surfen (20mg/kg) was also administered to mice treated with anti-CD3 antibody to activate T cells in vivo. Lymphocytes from surfen-treated mice also showed reduced proliferation and lymph node cell counts were reduced. Surfen reduced labeling with a cell viability marker (7-ADD) but to a much lower extent than its effect on proliferation. Surfen also reduced CD25 (the α-subunit of the interleukin (IL)-2 receptor) expression with no effect on CD69 expression in T cells treated in vivo but not in vitro. When receptor activation was bypassed by treating T cells in vitro with phorbyl myristate acetate (PMA, 10ng/ml) and ionomycin (100ng/ml), surfen treatment either increased proliferation (10μM) or had no effect (2.5, 5 and 20μM). In vitro treatment of T cells with surfen had no effect on IL-2 or interferon (IFN)-γ synthesis and did not alter proliferation of the IL-2 dependent cell line CTLL-2. The effect of surfen was antagonized dose-dependently by co-treatment with heparin sulfate. We conclude that surfen inhibits T cell proliferation in vitro and in vivo. When T cell receptor-driven activation is bypassed surfen had a neutral or stimulatory effect on T cell proliferation. The results imply that endogenous GAGs and proteoglycans play a complex role in promoting or inhibiting different aspects of T cell activation.
    Biochemical and Biophysical Research Communications 12/2013; · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By targeting cells that provide protection against infection, HIV-1 causes acquired immunodeficiency syndrome. Infection starts when gp120, the viral envelope glycoprotein, binds to CD4 and to a chemokine receptor usually CCR5 or CXCR4. As many microorganisms, HIV-1 also interacts with heparan sulfate (HS), a complex group of cell surface associated anionic polysaccharides. It has been thought that this binding, occurring at a step prior to CD4 recognition, increases infectivity by pre-concentrating the virion particles at the cell surface. Early work, dating from before the identification of CCR5 and CXCR4, showed that a variety of HS mimetics bind to the gp120 V3 loop through electrostatic interactions, compete with cell surface associated HS to bind the virus and consequently, neutralize the infectivity of a number of T-cell line-adapted HIV-1 strains. However, progress made to better understand HIV-1 attachment and entry, coupled with the recent identification of additional gp120 regions mediating HS recognition, have considerably modified this view. Firstly, the V3 loop from CXCR4-using viruses is much more positively charged compared to those using CCR5. HS inhibition of cell attachment is thus restricted to CXCR4-using viruses (such as T-cell line-adapted HIV-1). Secondly, studies aiming at characterizing the gp120/HS complex revealed that HS binding was far more complex than previously thought: in addition to the V3 loop of CXCR4 tropic gp120, HS interacts with several other cryptic areas of the protein, which can be induced upon CD4 binding, and are conserved amongst CCR5 and CXCR4 viruses. In view of these data, this review will detail the present knowledge on HS binding to HIV-1, with regards to attachment and entry processes. It will discuss the perspective of targeting the gp120 co-receptor binding site with HS mimetic compounds, a strategy that recently gave rise to entry inhibitors that work in the low nanomolar range, independently of co-receptor usage.
    Frontiers in Immunology 01/2013; 4:385.