Individual responses to novelty are associated with differences in behavioral and neurochemical profiles.

Department of Pharmacology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
Behavioural Brain Research (Impact Factor: 3.33). 04/2008; 187(2):462-72. DOI: 10.1016/j.bbr.2007.10.010
Source: PubMed

ABSTRACT Experimental animals can be differentiated on the basis of their horizontal or vertical activity to high responders (HR) and low responders (LR) upon exposure to a novel environment. These individual differences have been associated with behavioral and neurobiological differences in a number of experimental procedures used for studying sensitivity to psychostimulants, anxiety, depression, and cognitive function. In the present study, we differentiated the rats to HR and LR based on their vertical activity upon exposure to a novel environment. Additionally, we ascertained whether HR and LR rats differ in a battery of tests such as passive avoidance (PA), object recognition (OR), and the water-maze (WM) that provide indices for cognitive function and the forced swim test (FST), an animal model of affective responsivity and antidepressant-like activity. Potential differences in neurochemical indices between the two phenotypes were also examined. HR rats displayed impaired non-spatial object recognition memory, but enhanced spatial performance, as compared to LR rats. FST induced "depressive-like" symptoms in both phenotypes that were differently manifested in HR versus LR rats. Neurochemical findings revealed distinct differences in serotonergic and dopaminergic activity in the striatum and the prefrontal cortex of HR as compared to LR rats. The above results show that HR and LR rats exhibit important differences in a battery of tests related to cognitive performance or affective responsivity, which may be associated with differences in certain neurobiological parameters.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individual differences in the forced swimming test (FST) could be associated with differential temporal dynamics of gene expression and neurotransmitter activity. We tested juvenile male rats in the FST and classified the animals into those with low and high immobility according to the amount of immobility time recorded in FST. These groups and a control group which did not undergo the FST were sacrificed either one, six or twenty-four hours after the test. We analyzed the expression of the CRF, CRFR1, BDNF and TrkB in the prefrontal cortex, hippocampus and nucleus accumbens as well as norepinephrine, dopamine, serotonin, glutamate, GABA and glutamine in the hippocampus and nucleus accumbens. Animals with low immobility showed significant reductions of BDNF expression across time points in both the prefrontal cortex and the nucleus accumbens when compared with non-swim control. Moreover, rats with high immobility only showed a significant decrease of BDNF expression in the prefrontal cortex six hours after the FST. Regarding neurotransmitters, only accumbal dopamine turnover and hippocampal glutamate content showed an effect of individual differences (i.e. animals with low and high immobility), whereas nearly all parameters showed significant differences across time points. Correlational analyses suggest that immobility in the FST, probably reflecting despair, is related to prefrontal cortical BDNF and to the kinetics observed in several other neurochemical parameters. Taken together, our results suggest that individual differences observed in depression-like behavior can be associated not only with changes in the concentrations of key neurochemical factors but also with differential time courses of such factors.
    Physiology & Behavior 01/2014; · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many neuropsychiatric disorders, including stress-related mood disorders, are complex multi-parametric syndromes. Susceptibility to stress and depression is individually different. The best animal model of individual differences that can be used to study the neurobiology of affect regards spontaneous reactions to novelty. Experimentally, when naive rats are exposed to the stress of a novel environment, they display a highly variable exploratory activity and are classified as high or low responders (HR or LR, respectively). Importantly, HR and LR rats do not seem to exhibit a substantial differentiation in relation to their 'depressive-like' status in the forced swim test (FST), a widely used animal model of 'behavioral despair.' In the present study, we investigated whether FST exposure would be accompanied by phenotype-dependent differences in hippocampal gene expression in HR and LR rats. HR and LR rats present a distinct behavioral pattern in the pre-test session but develop comparable depressive-like status in the second FST session. At 24 h following the second FST session, HR and LR rats (stressed and unstressed controls) were sacrificed and hippocampal samples were independently analyzed on whole rat genome Illumina arrays. Functional analysis into pathways and networks was performed using Ingenuity Pathway Analysis (IPA) software. Notably, hippocampal gene expression signatures between HR and LR rats were markedly divergent, despite their comparable depressive-like status in the FST. These molecular differences are reflected in both the extent of transcriptional remodeling (number of significantly changed genes) and the types of molecular pathways affected following FST exposure. A markedly higher number of genes (i.e., 2.28-fold) were statistically significantly changed following FST in LR rats, as compared to their HR counterparts. Notably, genes associated with neurogenesis and synaptic plasticity were induced in the hippocampus of LR rats in response to FST, whereas in HR rats, FST induced pathways directly or indirectly associated with induction of apoptotic mechanisms. The markedly divergent gene expression signatures exposed herein support the notion that the hippocampus of HR and LR rats undergoes distinct transcriptional remodeling in response to the same stress regimen, thus yielding a different FST-related 'endophenotype,' despite the seemingly similar depressive-like phenotype.
    Human genomics 02/2014; 8(1):4.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animals with low and high immobility in the forced swimming test (FST) differ in a number of neurobehavioral factors. A growing body of evidence suggests that the exposure to enriched environments mediates a number of changes in the brain. Therefore, we studied if animals' individuality can somehow modulate the response to environmental stimuli. Male rats were classified according to their immobility time scores in the FST test session as animals with low, medium or high immobility. Then, rats from groups with low and high immobility were randomly distributed in two groups to be reared in different housing conditions (i.e., enriched and standard conditions) during eight weeks. Animals were subjected to the open field test (OFT) before and six weeks after the start of housing protocol. Rats with high immobility in the FST also showed high ambulation and high rearing time in the first OFT. Such findings were not observed in the second OFT. Conversely, an effect of environmental enrichment was found in the second OFT where enriched animals showed lower ambulation and higher grooming time than the standard control group. Rats were sacrificed after the housing protocol and neurochemical content and/or gene expression were studied in three different brain regions: the prefrontal cortex, the hippocampus and the nucleus accumbens. Rats with low immobility showed significantly higher accumbal 5-HT levels than animals with high immobility, whereas no neurochemical differences were observed between enriched and standard animals. Regarding expression data, however, an effect of enrichment on accumbal corticotropin-releasing factor (CRF) and its receptor 1 (CRFR1) levels was observed, and such effect depended on immobility levels. Thus, our results not only allowed us to identify a number of differences between animals with low and high immobility or animals housed in standard and enriched conditions, but also suggested that animals' individuality modulated in some way the response to environmental stimuli.
    Neuroscience 02/2014; · 3.12 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014