Study of assembly of arachidic acid/LDHs hybrid films containing photoactive dyes.

Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Shandong University, Jinan, Shandong 250100, People's Republic of China.
Journal of Colloid and Interface Science (Impact Factor: 3.55). 03/2008; 318(2):337-47. DOI: 10.1016/j.jcis.2007.08.068
Source: PubMed

ABSTRACT Hybrid monolayers formed with an floating arachidic acid (AA) anions monolayer binding with a densely packed layered double hydroxides (LDHs) monolayer at an air/LDHs suspension interface has been studied by pi-A isotherms and TEM images. An ordered multilayer film of AA/LDHs has been fabricated by Langmuir-Blodgett technique on various substrates. The photoactive dyes (methyl orange, MO, and Congo red, CR) can be incorporated into the galleries of LDHs in the AA/LDHs hybrid LB film by an ion intercalation method. The results of FTIR and UV-vis absorption spectra can approve the formation of AA/LDHs/dyes composite films. In addition, UV-vis absorption spectra and LAXRD analyses also provide evidence for the good vertical uniformity and stable layered periodic structure of AA/LDHs/dyes films. More interestingly, it was found that the dye molecules intercalated can be induced by a positively charged LDHs sheet to align in a special orientation and form different aggregates: MO molecules form sandwich H-type aggregates, while CR molecules form head-to-tail J-type aggregates. On the basis of these data, a possible model of the AA/LDHs/dyes composite films was proposed. Also, the dye molecules incorporated into AA/LDHs films exhibit excellent configuration stability under the irradiation of UV light because the LDHs matrix offers a more rigid and constrained environment for them.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the NN, NH stretching vibrations and SO, SO3(-) group respectively, which are considered as marks to assess MO(-) ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MO-LDH displayed a "honey-comb" like structure, with the adjacent layers expanded.
    Journal of Colloid and Interface Science 07/2014; 426:44-7. · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel magnetic Fe(3)O(4)/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe(2+), Fe(3+), Cr(3+), and Zn(2+)) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms.
    Journal of hazardous materials 10/2012; · 4.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the investigation of the surface morphology and DC conductivity of nanostructured layer-by-layer (LbL) films from nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with either multi-walled carbon nanotubes (MWNTs/NiTsPc) or multi-walled carbon nanotubes dispersed in chitosan (MWNTs+Ch/NiTsPc). We have explored the surface morphology of the films by using fractal concepts and dynamic scale laws. The MWNTs/NiTsPc LbL films were found to have a fractal dimension of ca. 2, indicating a quasi Euclidean surface. MWNTs+Ch/NiTsPc LbL films are described by the Lai-Das Sarma-Villain (LDV) model, which predicts the deposition of particles and their subsequent relaxation. An increase in the wetting contact angle of MWNTs+Ch/NiTsPc LbL films was observed, as compared with MWNTs/NiTsPc LbL films, which presented an increase in the fractal dimension of the first system. Room temperature conductivities were found be ca. 0.45 S/cm for MWNTs/NiTsPc and 1.35 S/cm for MWNTs+Ch/NiTsPc.
    Journal of Colloid and Interface Science 10/2011; 367(1):467-71. · 3.55 Impact Factor