Article

An extended epidermal response heals cutaneous wounds in the absence of a hair follicle stem cell contribution

Faculty of Life Sciences, University of Manchester, Manchester, UK.
Journal of Investigative Dermatology (Impact Factor: 6.19). 06/2008; 128(5):1311-8. DOI: 10.1038/sj.jid.5701178
Source: PubMed

ABSTRACT Hair follicles have been observed to provide a major cellular contribution to epidermal healing, with emigration of stem-derived cells from the follicles aiding in wound reepithelialization. However, the functional requirements for this hair follicle input are unknown. Here we have characterized the keratinocyte stem cell status of mutant mice that lack all hair follicle development on their tail, and analyzed the consequent alterations in epidermal wound healing rate and mechanisms. In analyzing stem cell behavior in embryonic skin we found that clonogenic keratinocytes are relatively frequent in the ectoderm prior to hair follicle formation. However, their frequency in the interfollicular epidermis drops sharply by birth, at which time the majority of stem cells are present within the hair follicles. We find that in the absence of hair follicles cutaneous wounds heal with an acute delay in reepithelialization. This delay is followed by expansion of the region of activated epidermis, beyond that seen in normal haired skin, followed by appropriate wound closure. JID Journal Club article: for questions, answers, and open discussion about this article please go to http://network.nature.com/group/jidclub.

0 Bookmarks
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The differentiation of adipose-derived stem cells (ASCs) towards epithelial lineages has yet to be demonstrated using a standardized method. This study investigated whether keratinocyte progenitor cells are present in the ASC population. ASCs isolated from subcutaneous adipose tissue were cultured and examined for the expression of the keratinocyte progenitor markers p63 and desmoglein 3 (DSG3) by immunofluorescence microscopy and flow cytometry. In addition, p63 and DSG3 expression levels were assessed before and after differentiation of ASCs into adipocytes by real-time PCR and western blot analysis, as well as in subcutaneous adipose tissue by real-time reverse transcriptase polymerase chain reaction. Both markers were expressed in ASCs, but were downregulated after the differentiation of ASCs into adipocytes; p63-positive cells were also detected in subcutaneous adipose tissue. ASCs co-cultured with human fibroblasts and incubated with all-trans retinoic acid and bone morphologic protein 4 showed an upregulation in DSG3 level, which was also increased in the presence of type IV collagen. They also showed an upregulation in cytokeratin-5 level only in the presence of type IV collagen. These results provide the demonstration that keratinocyte progenitor cells reside in subcutaneous adipose tissue.
    PLoS ONE 01/2015; 10(2):e0118402. DOI:10.1371/journal.pone.0118402 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptors (GPCRs) mediate multiple key biological processes in the body. The orphan receptor GPR39 has been reported to be involved in various pathophysiological events. However, the function of GPR39 in skin biology remains unknown. Using a genetically engineered mouse strain in which lacZ expression faithfully replaced endogenous Gpr39 expression, we discovered a unique expression pattern of Gpr39 in the sebaceous gland (SG). Using various methods, we confirmed that GPR39 marked a specific cell population at the opening of the SG and colocalised with the SG stem cell marker Blimp1. Further investigations showed that GPR39 was spatiotemporally expressed during skin wound repair. Although it was dispensable for skin development and homeostasis, GPR39 contributed positively to skin wound healing: its loss led to a delay in wound healing during the intermediate stage. The present study reveals a novel role of GPR39 in both dermatology and stem cell biology that has not been previously recognised.
    Scientific Reports 01/2015; 5:7913. DOI:10.1038/srep07913 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd.
    Cell Biochemistry and Function 12/2014; DOI:10.1002/cbf.3086 · 2.13 Impact Factor