Article

Anophthalmia and microphthalmia

MRC Human Genetics Unit, Edinburgh, UK.
Orphanet Journal of Rare Diseases (Impact Factor: 3.96). 02/2007; 2(1):47. DOI: 10.1186/1750-1172-2-47
Source: PubMed

ABSTRACT Anophthalmia and microphthalmia describe, respectively, the absence of an eye and the presence of a small eye within the orbit. The combined birth prevalence of these conditions is up to 30 per 100,000 population, with microphthalmia reported in up to 11% of blind children. High-resolution cranial imaging, post-mortem examination and genetic studies suggest that these conditions represent a phenotypic continuum. Both anophthalmia and microphthalmia may occur in isolation or as part of a syndrome, as in one-third of cases. Anophthalmia/microphthalmia have complex aetiology with chromosomal, monogenic and environmental causes identified. Chromosomal duplications, deletions and translocations are implicated. Of monogenic causes only SOX2 has been identified as a major causative gene. Other linked genes include PAX6, OTX2, CHX10 and RAX. SOX2 and PAX6 mutations may act through causing lens induction failure. FOXE3 mutations, associated with lens agenesis, have been observed in a few microphthalmic patients. OTX2, CHX10 and RAX have retinal expression and may result in anophthalmia/microphthalmia through failure of retinal differentiation. Environmental factors also play a contributory role. The strongest evidence appears to be with gestational-acquired infections, but may also include maternal vitamin A deficiency, exposure to X-rays, solvent misuse and thalidomide exposure. Diagnosis can be made pre- and post-natally using a combination of clinical features, imaging (ultrasonography and CT/MR scanning) and genetic analysis. Genetic counselling can be challenging due to the extensive range of genes responsible and wide variation in phenotypic expression. Appropriate counselling is indicated if the mode of inheritance can be identified. Differential diagnoses include cryptophthalmos, cyclopia and synophthalmia, and congenital cystic eye. Patients are often managed within multi-disciplinary teams consisting of ophthalmologists, paediatricians and/or clinical geneticists, especially for syndromic cases. Treatment is directed towards maximising existing vision and improving cosmesis through simultaneous stimulation of both soft tissue and bony orbital growth. Mild to moderate microphthalmia is managed conservatively with conformers. Severe microphthalmia and anophthalmia rely upon additional remodelling strategies of endo-orbital volume replacement (with implants, expanders and dermis-fat grafts) and soft tissue reconstruction. The potential for visual development in microphthalmic patients is dependent upon retinal development and other ocular characteristics.

Download full-text

Full-text

Available from: David Robert Fitzpatrick, Aug 31, 2015
1 Follower
 · 
363 Views
 · 
116 Downloads
  • Source
    • ", 2013 ) , as we reviewed in the first section of the paper . Anophthalmia and microphthalmia are repeatedly reported in this context ( Verma and FitzPatrick , 2007 ) , and are often associated with mental diseases like schizophrenia where language is affected ( Leivada and Boeckx , 2014 ) . "
    [Show abstract] [Hide abstract]
    ABSTRACT: The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
    Frontiers in Psychology 06/2015; 6:794. DOI:10.3389/fpsyg.2015.00794 · 2.80 Impact Factor
  • Source
    • "The clinical evidence of nyctalopia in our third case is thought to be related to hypovitaminosis A, as reported by the patient. The baby also exhibited complex congenital malformations including microphthalmia and optic nerve, chiasm and tract hypoplasia; this condition might be correlated to abnormal neural crest cell migration or to degeneration of the optic vesicle induced by vitamin deficiency [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Bariatric surgery results in decreased food intake and a variable degree of malabsorption. Without adequate supplementation, the most common complications of this surgery are nutritional disorders. Pregnancy following surgery for obesity is a particular condition requiring strict monitoring of nutrient intake necessary for fetal development and a favourable neonatal prognosis. Patients Malnutrition in pregnancy and congenital neural malformations are reported in three women who had previously undergone bariatric surgery (1, 5 and 18 years before pregnancy, respectively). Two patients underwent the Roux en Y bypass and one bilio-pancreatic diversion with gastroplasty. None of the three received pre-conceptional nutritional counselling. Patients 1 and 2 did not undergo postoperative nutritional surveillance; nutrient supplementation was started at 22 and 20 weeks gestation, respectively. In patient 3, supplementation was stopped at six weeks gestation. Results Newborns 1 and 2 presented with dorsal myelomeningocele and ventricular dilation. Both underwent surgery and a ventriculo-peritoneal shunt was inserted in the first month of life. Newborn 3 had microcephaly, bilateral microphthalmia and sensorineural deafness. Conclusions Diet and nutritional status, before and during pregnancy, play an important role in the early processes of fetal development and neonatal outcome. Women of childbearing age who have had bariatric surgery, should be encouraged to follow a well-balanced diet as part of a weight management strategy. They should be advised to take recommended maternal supplements.
    Nutrition Journal 06/2014; 13(1):59. DOI:10.1186/1475-2891-13-59 · 2.64 Impact Factor
  • Source
    • "Since Astyanax cavefish exhibit reduced eyes and degenerate retina, they serve as an evolutionary mutant model for human ocular diseases such as anopthalmia/microphthalmia and retinitis pigmentosa. Anopthalmia/microphthalmia is a rare genetic disorder characterized by the reduction or loss of eyes [15], while retinitis pigmentosa is a more common genetic disorder characterized by photoreceptor cell death [3]. Although mutations within numerous genes can cause anopthalmia/microphthalmia and retinitis pigmentosa [16], the mutations responsible for many cases remain unknown, including those responsible for up to 30% of all cases of retinitis pigmentosa [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The retina is the light-sensitive tissue of the eye that facilitates vision. Mutations within genes affecting eye development and retinal function cause a host of degenerative visual diseases, including retinitis pigmentosa and anophthalmia/microphthalmia. The characin fish Astyanax mexicanus includes both eyed (surface fish) and eyeless (cavefish) morphs that initially develop eyes with normal retina; however, early in development, the eyes of cavefish degenerate. Since both surface and cave morphs are members of the same species, they serve as excellent evolutionary mutant models with which to identify genes causing retinal degeneration. In this study, we crossed the eyed and eyeless forms of A. mexicanus and quantified the thickness of individual retinal layers among 115 F(2) hybrid progeny. We used next generation sequencing (RAD-seq) and microsatellite mapping to construct a dense genetic map of the Astyanax genome, scan for quantitative trait loci (QTL) affecting retinal thickness, and identify candidate genes within these QTL regions. The map we constructed for Astyanax includes nearly 700 markers assembled into 25 linkage groups. Based on our scans with this map, we identified four QTL, one each associated with the thickness of the ganglion, inner nuclear, outer plexiform, and outer nuclear layers of the retina. For all but one QTL, cavefish alleles resulted in a clear reduction in the thickness of the affected layer. Comparative mapping of genetic markers within each QTL revealed that each QTL corresponds to an approximately 35 Mb region of the zebrafish genome. Within each region, we identified several candidate genes associated with the function of each affected retinal layer. Our study is the first to examine Astyanax retinal degeneration in the context of QTL mapping. The regions we identify serve as a starting point for future studies on the genetics of retinal degeneration and eye disease using the evolutionary mutant model Astyanax.
    PLoS ONE 02/2013; 8(2):e57281. DOI:10.1371/journal.pone.0057281 · 3.23 Impact Factor
Show more