Article

Nanodisk codes

Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA.
Nano Letters (Impact Factor: 12.94). 01/2008; 7(12):3849-53. DOI: 10.1021/nl072606s
Source: PubMed

ABSTRACT We report a new encoding system based upon dispersible arrays of nanodisks prepared by on-wire lithography and functionalized with Raman active chromophores. These nanodisk arrays are encoded both physically (in a "barcode" pattern) and spectroscopically (Raman) along the array. These structures can be used in covert encoding strategies because of their small size or as biological labels with readout by scanning confocal Raman spectroscopy. As proof-of-concept, we demonstrate their utility in DNA detection in a multiplexed format at target concentrations as low as 100 fM.

0 Followers
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode), and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.
    Analytical Chemistry 12/2014; 87(2). DOI:10.1021/ac5032379 · 5.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are emerging new biomarkers for many human diseases. To fully employ miRNAs as biomarkers for clinical diagnosis, it is most desirable to accurately determine the expression patterns of miRNAs. The optimum miRNA profiling method would feature 1) highest sensitivity with a wide dynamic range for accurate expression patterns, 2) supreme specificity to discriminate single nucleotide polymorphisms (SNPs), and 3) simple sensing processes to minimize measurement variation. Here, an ultra-specific detection method of miRNAs with zeptomole sensitivity is reported by applying bi-temperature hybridizations on single-crystalline plasmonic nanowire interstice (PNI) sensors. This method shows near-perfect accuracy of SNPs and a very low detection limit of 100 am (50 zeptomole) without any amplification or labeling steps. Furthermore, multiplex sensing capability and wide dynamic ranges (100 am–100 pm) of this method allows reliable observation of the expression patterns of miRNAs extracted from human tissues. The PNI sensor offers combination of ultra-specificity and zeptomole sensitivity while requiring two steps of hybridization between short oligonucleotides, which could present the best set of features for optimum miRNA sensing method.
    Small 06/2014; DOI:10.1002/smll.201400164 · 7.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies--from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory.
    Sensors 12/2012; 12(2):1657-87. DOI:10.3390/s120201657 · 2.05 Impact Factor

Preview

Download
0 Downloads
Available from