Article

Experimental transplantation of corneal epithelium-like cells induced by Pax6 gene transfection of mouse embryonic stem cells.

Department of Ophthalmology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan.
Cornea (Impact Factor: 1.75). 01/2008; 26(10):1220-7. DOI: 10.1097/ICO.0b013e31814fa814
Source: PubMed

ABSTRACT Corneal epithelial stem cells are deficient in cases of limbal disorders, leading to conjunctival epithelial ingrowth, vascularization, and eventually visual disturbance. We introduced the eye development-associated transcription factor pax6 to embryonic stem (ES) cells and tested whether pax6-transfected cells resembling purified corneal epithelial cells were applicable as a cell source for corneal transplantation.
pax6 cDNA with green fluorescence protein was electrotransfected to ES cells and the cells were cultured with G418 for 14 days. They were characterized by reverse transcription-polymerase chain reaction and immunohistochemistry. The cells were transplanted onto experimentally damaged mouse corneas. Histologic reconstitution of the corneal epithelium was assessed.
pax6-transfected cells formed a monolayer of epithelium-like cells in vitro. They expressed cytokeratin12, a specific keratin of corneal epithelial cells, E-cadherin, and CD44, which are important adhesion molecules of corneal epithelial cells on the cell membrane. They accumulated to make a colony that gave a staining pattern of reticular configuration for cytokeratin 12, E-cadherin, and CD44. When the cells were transplanted onto damaged cornea, they have been kept alive on the cornea.
The purified corneal epithelium-like cells derived from ES cells transfected with pax6 gene adapted to the injured cornea and were kept alive on it. These results suggested application of ES cell-derived corneal epithelial cells for treating corneal injuries.

0 Bookmarks
 · 
115 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Equine peripheral blood (ePB) can be used as a source of stem cells (SCs) in horses, both for research and for practical purposes. A relatively low volume of ePB is sufficient for the purification and expansion of the SCs. The identification of the SCs is performed by demonstrating the presence (CD34, CD90, CD105 and CD117) or absence (CD14) of specific markers on the cell surface by means of fluorescent staining, followed by Fluorescence Activated Cell Sorting (FACS) for sorting out the desired population of SCs. The entire process of SC isolation and enrichment from ePB typically takes three days, after which the enriched SC sample can be sent back to the patient for clinical application. The two most common clinical applications of SCs from ePB will be demonstrated with two field cases. The first case presents a lesion of the body of the suspensory ligament in a 13-year-old warmblood mare and the second case describes a bacterial ulcerative keratitis in a 20-year- old warmblood gelding.
    Vlaams Diergeneeskundig Tijdschrift 01/2011; · 0.36 Impact Factor
  • Annals of Physical and Rehabilitation Medicine. 01/2011; 54.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation, and involution. Based on the facts that (i) mammary stem/progenitor cells (MaSC) are proposed to be the driving forces behind mammary growth and function and (ii) variation exists between mammalian species with regard to physiological and pathological functioning of this organ, we believe that studying MaSC from different mammals is of great comparative interest. Over the years, important data has been gathered on MaSC of men and mice, although knowledge on MaSC in other mammals remains limited. Therefore, the aim of this work was to isolate and characterize MaSC from the mammary gland of horses. Hereby, our salient findings were that the isolated equine cells met the 2 in vitro hallmark properties of stem cells, namely the ability to self-renew and to differentiate into multiple cell lineages. Moreover, the cells were immunophenotyped using markers for CD29, CD44, CD49f, and Ki67. Finally, we propose the mammosphere assay as a valuable in vitro assay to study MaSC during different physiological phases since it was observed that equine lactating mammary gland contains significantly more mammosphere-initiating cells than the inactive, nonlactating gland (a reflection of MaSC self-renewal) and, moreover, that these spheres were significantly larger in size upon initial cultivation (a reflection of progenitor cell proliferation). Taken together, this study not only extends the current knowledge of mammary gland biology, but also benefits the comparative approach to study and compare MaSC in different mammalian species.
    Stem cells and development 05/2012; 21(16):3055-67. · 4.15 Impact Factor