Article

Human pigmentation variation: Evolution, genetic basis, and implications for public health

Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada L5L 1C6.
American Journal of Physical Anthropology (Impact Factor: 2.51). 01/2007; Suppl 45(S45):85-105. DOI: 10.1002/ajpa.20727
Source: PubMed

ABSTRACT Pigmentation, which is primarily determined by the amount, the type, and the distribution of melanin, shows a remarkable diversity in human populations, and in this sense, it is an atypical trait. Numerous genetic studies have indicated that the average proportion of genetic variation due to differences among major continental groups is just 10-15% of the total genetic variation. In contrast, skin pigmentation shows large differences among continental populations. The reasons for this discrepancy can be traced back primarily to the strong influence of natural selection, which has shaped the distribution of pigmentation according to a latitudinal gradient. Research during the last 5 years has substantially increased our understanding of the genes involved in normal pigmentation variation in human populations. At least six genes have been identified using genotype/phenotype association studies and/or direct functional assays, and there is evidence indicating that several additional genes may be playing a role in skin, hair, and iris pigmentation. The information that is emerging from recent studies points to a complex picture where positive selection has been acting at different genomic locations, and for some genes only in certain population groups. There are several reasons why elucidating the genetics and evolutionary history of pigmentation is important. 1) Pigmentation is a trait that should be used as an example of how misleading simplistic interpretations of human variation can be. It is erroneous to extrapolate the patterns of variation observed in superficial traits such as pigmentation to the rest of the genome. It is similarly misleading to suggest, based on the "average" genomic picture, that variation among human populations is irrelevant. The study of the genes underlying human pigmentation diversity brings to the forefront the mosaic nature of human genetic variation: our genome is composed of a myriad of segments with different patterns of variation and evolutionary histories. 2) Pigmentation can be very useful to understand the genetic architecture of complex traits. The pigmentation of unexposed areas of the skin (constitutive pigmentation) is relatively unaffected by environmental influences during an individual's lifetime when compared with other complex traits such as diabetes or blood pressure, and this provides a unique opportunity to study gene-gene interactions without the effect of environmental confounders. 3) Pigmentation is of relevance from a public health perspective, because of its critical role in photoprotection and vitamin D synthesis. Fair-skinned individuals are at higher risk of several types of skin cancer, particularly in regions with high UVR incidence, and dark-skinned individuals living in high latitude regions are at higher risk for diseases caused by deficient or insufficient vitamin D levels.

0 Bookmarks
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic syndrome (MetS) predicts type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer, and their rates have escalated over the last few decades. Obesity related co-morbidities also overlap the concept of the metabolic syndrome (MetS). However, understanding of the syndrome's underlying causes may have been misapprehended. The current paper follows on from a theory review by McGill, A-T in Archives of Public Health, 72: 30. This accompanying paper utilises research on human evolution and new biochemistry to theorise on why MetS and obesity arise and how they affect the population. The basis of this composite unifying theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals. In humans who consume a nutritious diet, the NRF2 system has become highly energy efficient. Other relevant human-specific co-adaptations are explored. In order to 'test' this composite unifying theory it is important to show that the hypothesis and sub-theories pertain throughout the whole of human evolution and history up till the current era. Corollaries of the composite unifying theory of MetS are examined with respect to past under-nutrition and malnutrition since agriculture began 10,000 years ago. The effects of man-made pollutants on degenerative change are examined. Projections are then made from current to future patterns on the state of 'insufficient micronutrient and/or unbalanced high energy malnutrition with central obesity and metabolic dysregulation' or 'malnubesity'. Forecasts on human health are made on positive, proactive strategies using the composite unifying theory, and are extended to the wider human ecology of food production. A comparison is made with the outlook for humans if current assumptions and the status quo on causes and treatments are maintained. Areas of further research are outlined. A table of suggestions for possible public health action is included.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Background: Insufficient vitamin D activity has attracted increasing interest as a possible underlying risk factor in disorders of the central nervous system, including autism. Methods: In this study, 25-hydroxyvitamin D (25(OH)D) was analysed in 58 Sweden-born sibling pairs, in which one child had autism spectrum disorder (ASD) and the other did not. The study group consisted of two representative samples; 47 Gothenburg sibling pairs with mixed ethnicities and 11 Stockholm sibling pairs with Somali background. 25(OH)D levels were analysed in the stored dried blood spots taken in the neonatal period for metabolic screening. Results: The collapsed group of children with ASD had significantly lower vitamin D levels (M = 24.0 nM, SD = 19.6) as compared with their siblings (M= 31.9 nM, SD = 27.7), according to a paired samples t-test (P = 0.013). The difference was - most likely - not only accounted for by a difference in season of birth between ASD and non-ASD siblings since the mean 25(OH)D levels differed with similar effect size between the sibling pairs born during winter and summer, respectively. All children with African/Middle East background, both the children with ASD and their non-ASD siblings, had vitamin D deficiency. Conclusions: The findings suggest that low prenatal vitamin D may act as a risk factor for ASD, however, there is a need for replication with larger samples. Future research should study whether or not adequate supplementation of vitamin D to pregnant women might lower the risk for ASD in the offspring. Keywords: Autism spectrum disorder, Vitamin D, 25-hydroxyvitamin D, Neonatal, Dried blood spots
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seasonal affective disorder (SAD) is a polyfactorial and polygenetic disorder that involve biological and psychological sub-mechanisms that differentially involve depression, seasonality, circadian rhythms, retinal sensitivity, iris pigmentation, sleep factors, and the neurotransmitters involved with these systems. Within the framework of the polyfactorial conceptualization of SAD, we review the possible contributions of vitamin D3 with respect to the aforementioned sub-mechanisms. We hypothesize that rather than functioning primarily as a proximal or direct sub-mechanism in the etiology of SAD, vitamin D likely functions in a more foundational and regulative role in potentiating the sub-mechanisms associated with the depressive and seasonality factors. There are several reasons for this position: 1. vitamin D levels fluctuate in the body seasonally, with a lag, in direct relation to seasonally-available sunlight; 2. lower vitamin D levels have been observed in depressed patients (as well as in patients with other psychiatric disorders) compared to controls; 3. vitamin D levels in the central nervous system affect the production of both serotonin and dopamine; and 4. vitamin D and vitamin D responsive elements are found throughout the midbrain regions and are especially concentrated in the hypothalamus, a region that encompasses the circadian timing systems and much of its neural circuitry. We also consider the variable of skin pigmentation as this may affect levels of vitamin D in the body. We hypothesize that people with darker skin pigmentation may experience greater risks for lower vitamin D levels that, especially following their migration to regions of higher latitude, could contribute to the emergence of SAD and other psychiatric and physical health problems.
    Medical Hypotheses 09/2014; DOI:10.1016/j.mehy.2014.09.010 · 1.15 Impact Factor

Full-text (2 Sources)

Download
180 Downloads
Available from
Jun 10, 2014