Article

Mutation rate and genome reduction in endosymbiotic and free-living bacteria.

Université de Lyon, Centre National de la Recherche Scientifique, UMR5558, Laboratoire de Biométrie et Biologie évolutive, Villeurbanne Cedex, 69622, France.
Genetica (Impact Factor: 1.75). 12/2007; 134(2):205-10. DOI: 10.1007/s10709-007-9226-6
Source: PubMed

ABSTRACT Genome reduction has been considered the hallmark of endosymbiotic bacteria, such as endocellular mutualists or obligatory pathogens until it was found exactly the same in several free-living bacteria. In endosymbiotic bacteria genome reduction is mainly attributed to degenerative processes due to small population size. These cannot affect the free-living bacteria with reduced genomes because they are known to have very large population sizes. It has been proposed that selection for simplification drove genome reduction in these free-living bacteria. For at least one of them (Prochlorococcus), genome reduction is associated with accelerated evolution and we suggest an alternative hypothesis based on increase in mutation rate as the primary cause of genome reduction in free-living bacteria.

Download full-text

Full-text

Available from: Gabriel Marais, Jul 06, 2015
0 Followers
 · 
162 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms.
    Molecular Ecology 02/2013; 22(3):867-907. DOI:10.1111/mec.12000 · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several isolates of the marine cyanobacterial genus Prochlorococcus have smaller genome sizes than those of the closely related genus Synechococcus. In order to test whether loss of protein-coding genes has contributed to genome size reduction in Prochlorococcus, we reconstructed events of gene family evolution over a strongly supported phylogeny of 12 Prochlorococcus genomes and 9 Synechococcus genomes. Significantly, more events both of loss of paralogs within gene families and of loss of entire gene families occurred in Prochlorococcus than in Synechococcus. The number of nonancestral gene families in genomes of both genera was positively correlated with the extent of genomic islands (GIs), consistent with the hypothesis that horizontal gene transfer (HGT) is associated with GIs. However, even when only isolates with comparable extents of GIs were compared, significantly more events of gene family loss and of paralog loss were seen in Prochlorococcus than in Synechococcus, implying that HGT is not the primary reason for the genome size difference between the two genera.
    Molecular Biology and Evolution 04/2011; 28(10):2751-60. DOI:10.1093/molbev/msr081 · 14.31 Impact Factor