Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar

Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.05). 03/2008; 275(1632):259-65. DOI: 10.1098/rspb.2007.1402
Source: PubMed


The leaves of Nepenthes pitcher plants are specialized pitfall traps which capture and digest arthropod prey. In many species, insects become trapped by 'aquaplaning' on the wet pitcher rim (peristome). Here we investigate the ecological implications of this capture mechanism in Nepenthes rafflesiana var. typica. We combine meteorological data and continuous field measurements of peristome wetness using electrical conductance with experimental assessments of the pitchers' capture efficiency. Our results demonstrate that pitchers can be highly effective traps with capture rates as high as 80% but completely ineffective at other times. These dramatic changes are due to the wetting condition of the peristome. Variation of peristome wetness and capture efficiency was perfectly synchronous, and caused by rain, condensation and nectar secreted from peristome nectaries. The presence of nectar on the peristome increased surface wetness mainly indirectly by its hygroscopic properties. Experiments confirmed that pitchers with removed peristome nectaries remained generally drier and captured prey less efficiently than untreated controls. This role of nectar in prey capture represents a novel function of plant nectar. We propose that the intermittent and unpredictable activation of Nepenthes pitcher traps facilitates ant recruitment and constitutes a strategy to maximize prey capture.

Download full-text


Available from: Walter Federle,
    • "The observed interaction is therefore almost certainly a case of nectar robbing with unidirectional benefit for the animal. The peak times of nectar harvesting activity – from sunrise until approximately 10:30 and again in the late afternoon, from around 17:00 until sunset – coincided well with the times of day when the peristomes are wet (Bauer et al. 2008). The Tutong sites are both very open habitats, and in the absence of rain, the relative air humidity determines whether the pitcher peristomes are dry or wet. "
    Bauer · Rembold · Grafe ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Carnivorous pitcher plants capture insect prey to acquire essential nutrients while growing on extremely poor soils. A few individual species have evolved mutualistic relationships with small mammals that visit the traps to harvest nectar, and in return leave faecal droppings in the pitchers. Here we report that a diverse guild of nectar-harvesting vertebrates visits pitchers of two common lowland Nepenthes species without providing any obvious benefit for the plants. Over four consecutive field seasons, we observed four species of sunbirds and one species of tree shrew drinking nectar from pitcher plants. Foraging activity was highest in the morning and late afternoon. Van Hasselt’s, Brown-throated and olive-backed sunbirds were regular and highly abundant pitcher visitors in two different field sites. A crimson sunbird and a lesser tree shrew were each observed harvesting nectar on one occasion. The vertebrates harvested nectar from the pitcher rim (peristome) of N. rafflesiana and from the underside of the pitcher lid of N. gracilis. A comparison of the nectar production of these and three further sympatric species revealed exceptionally high quantities of nectar for N. rafflesiana. Other factors such as plant and pitcher abundance and the habitat preferences of the observed vertebrates are likely to also play a role in their choice to visit particular species. This is the first account of a case of obvious nectar robbing from Nepenthes pitchers by a guild of species that are too large to serve as prey, while the pitcher size and shape prevent faecal droppings from reaching the pitcher’s inside. This interaction provides an example of a possible starting point for the evolution of the elaborate mutualistic relationships observed in some species. Follow-up adaptations of pitcher shape could enable the plants to catch the droppings of their visitors and turn an exploitative relationship into a mutualism.
    Journal of Natural History 01/2015; DOI:10.1080/00222933.2015.1059963 · 0.88 Impact Factor
  • Source
    • "Due to its wetness-dependence, the peristome only activates the trap intermittently, and visiting insects can safely harvest nectar during inactive (i.e. dry) times [15]. By this means, the plant may promote the survival of ‘scout’ ants that ultimately recruit larger numbers of worker ants to the trap. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Carnivorous pitcher plants capture prey with modified leaves (pitchers), using diverse mechanisms such as 'insect aquaplaning' on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to 'flick' insects into the trap. Depending on the experimental conditions (simulated 'rain', wet after 'rain', or dry), insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid.
    PLoS ONE 06/2012; 7(6):e38951. DOI:10.1371/journal.pone.0038951 · 3.23 Impact Factor
  • Source
    • "Insects have evolved numerous adaptations to enable them to move rapidly across natural surfaces within their ecological niches. Efficient adhesion is crucial for many different aspects of an insect's life, such as mating and oviposition (Bitar et al., 2009; Bitar et al., 2010), foraging and prey capture (Hölldobler and Wilson, 1990; Bauer et al., 2008), defence (Eisner and Aneshansley, 2000; Betz and Kolsch, 2004) and the selection and construction of nesting sites (Federle et al., 1997), especially for arboreal insects (Federle et al., 2002). When surfaces are rough, insects can utilise their tarsal claws to attach to surface asperities (Federle et al., 2002). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tarsal adhesive pads are crucial for the ability of insects to traverse their natural environment. Previous studies have demonstrated that for both hairy and smooth adhesive pads, significant reduction in adhesion can occur because of contamination of these pads by wax crystals present on plant surfaces or synthetic microspheres. In this paper, we focus on the smooth adhesive pads of ants and study systematically how particulate contamination and the subsequent loss of adhesion depends on particle size, particle surface energy, humidity and species size. To this end, workers of ant species Polyrhachis dives and Myrmica scabrinodis (Hymenoptera; Formicidae) were presented with loose synthetic powder barriers with a range of powder diameters (1-500 μm) and surface energies (PTFE or glass), which they would have to cross in order to escape the experimental arena. The barrier experiments were conducted for a range of humidities (10-70%). Experimental results and scanning electron microscopy confirm that particulate powders adversely affect the adhesive ability of both species of ant on smooth substrates via contamination of the arolia. Specifically, the loss of adhesion was found to depend strongly on particle diameter, but only weakly on particle type, with the greatest loss occurring for particle diameters smaller than the claw dimensions of each species, and no effect of humidity was found. We also observed that ants were repelled by the powder barriers which led to a decrease of adhesion prior to their eventual crossing, suggesting that insect antennae may play a role in probing the mechanical fragility of substrates before crossing them.
    Journal of Experimental Biology 02/2012; 215(Pt 4):605-16. DOI:10.1242/jeb.063578 · 2.90 Impact Factor
Show more