Article

Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks

School of Computing, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
BMC Bioinformatics (Impact Factor: 2.67). 02/2007; 8 Suppl 7(Suppl 7):S13. DOI: 10.1186/1471-2105-8-S7-S13
Source: PubMed

ABSTRACT The regulation of gene expression is achieved through gene regulatory networks (GRNs) in which collections of genes interact with one another and other substances in a cell. In order to understand the underlying function of organisms, it is necessary to study the behavior of genes in a gene regulatory network context. Several computational approaches are available for modeling gene regulatory networks with different datasets. In order to optimize modeling of GRN, these approaches must be compared and evaluated in terms of accuracy and efficiency.
In this paper, two important computational approaches for modeling gene regulatory networks, probabilistic Boolean network methods and dynamic Bayesian network methods, are compared using a biological time-series dataset from the Drosophila Interaction Database to construct a Drosophila gene network. A subset of time points and gene samples from the whole dataset is used to evaluate the performance of these two approaches.
The comparison indicates that both approaches had good performance in modeling the gene regulatory networks. The accuracy in terms of recall and precision can be improved if a smaller subset of genes is selected for inferring GRNs. The accuracy of both approaches is dependent upon the number of selected genes and time points of gene samples. In all tested cases, DBN identified more gene interactions and gave better recall than PBN.

2 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Dynamic aspects of gene regulatory networks are typically investigated by measuring system variables at multiple time points. Current state-of-the-art computational approaches for reconstructing gene networks directly build on such data, making a strong assumption that the system evolves in a synchronous fashion at fixed points in time. However, nowadays omics data are being generated with increasing time course granularity. Thus, modellers now have the possibility to represent the system as evolving in continuous time and to improve the models¿ expressiveness.ResultsContinuous time Bayesian networks are proposed as a new approach for gene network reconstruction from time course expression data. Their performance was compared to two state-of-the-art methods: dynamic Bayesian networks and Granger causality analysis. On simulated data, the methods comparison was carried out for networks of increasing size, for measurements taken at different time granularity densities and for measurements unevenly spaced over time. Continuous time Bayesian networks outperformed the other methods in terms of the accuracy of regulatory interactions learnt from data for all network sizes. Furthermore, their performance degraded smoothly as the size of the network increased. Continuous time Bayesian networks were significantly better than dynamic Bayesian networks for all time granularities tested and better than Granger causality for dense time series. Both continuous time Bayesian networks and Granger causality performed robustly for unevenly spaced time series, with no significant loss of performance compared to the evenly spaced case, while the same did not hold true for dynamic Bayesian networks. The comparison included the IRMA experimental datasets which confirmed the effectiveness of the proposed method. Continuous time Bayesian networks were then applied to elucidate the regulatory mechanisms controlling murine T helper 17 (Th17) cell differentiation and were found to be effective in discovering well-known regulatory mechanisms, as well as new plausible biological insights.Conclusions Continuous time Bayesian networks were effective on networks of both small and large size and were particularly feasible when the measurements were not evenly distributed over time. Reconstruction of the murine Th17 cell differentiation network using continuous time Bayesian networks revealed several autocrine loops, suggesting that Th17 cells may be auto regulating their own differentiation process.
    BMC Bioinformatics 12/2014; 15(1). DOI:10.1186/s12859-014-0387-x · 2.67 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting.
    Mathematical Modelling of Natural Phenomena 01/2013; 8(4). DOI:10.1051/mmnp/20138402 · 0.73 Impact Factor

Full-text (2 Sources)

Download
37 Downloads
Available from
May 21, 2014