Article

N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance.

Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.
PLoS Medicine (Impact Factor: 14). 12/2007; 4(12):e335. DOI: 10.1371/journal.pmed.0040335
Source: PubMed

ABSTRACT The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre's database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance.
The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre's database. N348I increased in prevalence from below 1% in 368 treatment-naïve individuals to 12.1% in 1,009 treatment-experienced patients (p = 7.7 x 10(-12)). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p < 0.001), the lamivudine resistance mutations M184V/I (p < 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p < 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43-4.81). The appearance of N348I was associated with a significant increase in viral load (p < 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wild-type HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4-fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance.
This study provides the first in vivo evidence that treatment with RT inhibitors can select a mutation (i.e., N348I) outside the polymerase domain of the HIV-1 RT that confers dual-class resistance. Its emergence, which can happen early during therapy, may significantly impact on a patient's response to antiretroviral therapies containing zidovudine and nevirapine. This study also provides compelling evidence for investigating the role of other mutations in the connection and RNase H domains in virological failure.

0 Bookmarks
 · 
135 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus (HIV) causes approximately 2.5 million new infections every year, and nearly 1.6 million patients succumb to HIV each year. Several factors, including cross-species transmission and error-prone replication have resulted in extraordinary genetic diversity of HIV groups. One of these groups, known as group M (main) contains nine subtypes (A-D, F-H and J-K) and causes ~95% of all HIV infections. Most reported data on susceptibility and resistance to anti-HIV therapies are from subtype B HIV infections, which are prevalent in developed countries but account for only ~12% of all global HIV infections, whereas non-B subtype HIV infections that account for ~88% of all HIV infections are prevalent primarily in low and middle-income countries. Although the treatments for subtype B infections are generally effective against non-B subtype infections, there are differences in response to therapies. Here, we review how polymorphisms, transmission efficiency of drug-resistant strains, and differences in genetic barrier for drug resistance can differentially alter the response to reverse transcriptase-targeting therapies in various subtypes.
    Viruses 09/2014; 6(9):3535-3562. · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-nucleoside reverse transcriptase inhibitors (NNRTI) have emerged as gold standards in current anti-AIDS drug discovery and development by allosterically inhibiting HIV reverse transcriptase (HIV-RT). Connection sub-domain mutation, N348I and the M184V active site mutation decreases HIV-1 RT susceptibility to NNRTI, nevirapine (NVP), whereas concurrence of both mutations improves enzyme susceptibility to NVP. Molecular dynamics simulation and enhanced post-dynamics analyses were applied to gain molecular insight into occurrence of N348I, M184V and N348I/M184V double mutations and their effect on NVP binding landscape. Results showed that the presence of the double mutation (N348I/M184V) ameliorates the drastic effects of connection sub-domain mutation, N348I alone on NVP binding, which correlates with experimental findings. We showed that the binding of NVP to the NNRTI binding pocket (NNIBP) is drastically distorted in the presence of connection sub-domain mutation, N348I and may further explain the impaired motions of mutant RTs compared to the wild type. The residue based fluctuation further suggested that the occurrence of N348I decreased the overall flexibility of NVP-HIV-RT complex whereas concurrence of N348I/M184V double mutation restored the conformational flexibility as compared to single mutant. This phenomenon was further validated by the trends of binding free energy as well as the per-residue footprints which showed an increased ∆Gbind in case of N348I/M184V double mutant as compared to N348I variant. Further, for the first time residue interaction network highlighted the structural changes due to occurrence of M184V and N348I mutations which gives a conclusive evidence of these mutations. This work provides the most comprehensive analysis of NVP resistance and the impact of double (N348I/M184V) mutation to date from a dynamics perspective and provides information that should prove useful for understanding the drug resistance mechanism against NVP. The results also provide preliminary data which might prove useful for the design of novel inhibitors that are less susceptible to drug resistance.
    The Protein Journal 08/2014; · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are widely used to treat HIV-1-infected individuals; indeed most first-line antiretroviral therapies typically include one NNRTI in combination with two nucleoside analogs. In 2008, the next-generation NNRTI etravirine was approved for the treatment of HIV-infected antiretroviral therapy-experienced individuals, including those with prior NNRTI exposure. NNRTIs are also increasingly being included in strategies to prevent HIV-1 infection. For example: (1) nevirapine is used to prevent mother-to-child transmission; (2) the ASPIRE (MTN 020) study will test whether a vaginal ring containing dapivirine can prevent HIV-1 infection in women; (3) a microbicide gel formulation containing the urea-PETT derivative MIV-150 is in a phase I study to evaluate safety, pharmacokinetics, pharmacodynamics and acceptability; and (4) a long acting rilpivirine formulation is under-development for pre-exposure prophylaxis. Given their widespread use, particularly in resource-limited settings, as well as their low genetic barriers to resistance, there are concerns about overlapping resistance between the different NNRTIs. Consequently, a better understanding of the resistance and cross-resistance profiles among the NNRTI class is important for predicting response to treatment, and surveillance of transmitted drug-resistance.
    Viruses 08/2014; 6(8):2960-2973. · 3.28 Impact Factor

Full-text (3 Sources)

Download
45 Downloads
Available from
May 31, 2014