N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance

Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.
PLoS Medicine (Impact Factor: 14). 12/2007; 4(12):e335. DOI: 10.1371/journal.pmed.0040335
Source: PubMed

ABSTRACT The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre's database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance.
The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre's database. N348I increased in prevalence from below 1% in 368 treatment-naïve individuals to 12.1% in 1,009 treatment-experienced patients (p = 7.7 x 10(-12)). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p < 0.001), the lamivudine resistance mutations M184V/I (p < 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p < 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43-4.81). The appearance of N348I was associated with a significant increase in viral load (p < 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wild-type HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4-fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance.
This study provides the first in vivo evidence that treatment with RT inhibitors can select a mutation (i.e., N348I) outside the polymerase domain of the HIV-1 RT that confers dual-class resistance. Its emergence, which can happen early during therapy, may significantly impact on a patient's response to antiretroviral therapies containing zidovudine and nevirapine. This study also provides compelling evidence for investigating the role of other mutations in the connection and RNase H domains in virological failure.

Download full-text


Available from: Gilda Tachedjian, Jul 29, 2015
  • Source
    • "In patients treated with solely NRTI or with regimens containing NRTI and NNRTI, the mutation is usually observed in combination with TAMs with or without K103N/ Y181C. These particular mutation combinations confer subsequently dual-class resistance, irrespective of the presence of major NNRTI mutations (Yap et al., 2007). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the origin and the effect of insertion D67D-THGERDLGPA within HIV-1 RT from a patient failing antiviral therapy. The insertion developed within the context of pre-existing NRTI and NNRTI mutations (M41L, L210W, T215Y and N348I). Concurrently, the NRTI mutations T69I and V118I and the NNRTI mutations K103N and Y181C were detected for the first time. High-level drug resistance (fold-changes≥50) and a good replication capacity (87% of wild-type) were observed, significantly higher than for the previous virus without insertion. The insertion was very similar to a region within human chromosome 17 (31/34 nucleotide identity), and had already been detected independently in a Japanese HIV-1 isolate. These results suggest that a particular sequence within human chromosome 17 is prone to horizontal gene transfer into the HIV-1 RT finger subdomain. This insertion confers selective advantage to HIV-1 by its contribution to multi-drug resistance and restoration of impaired replication capacity.
    Virology 05/2014; s 456–457:310–318. DOI:10.1016/j.virol.2014.03.023 · 3.28 Impact Factor
  • Source
    • "fectamine 2000 ( Invitrogen ) at a ratio of 4 : 1 . Supernatants were harvested 48 h later and filtered through 0 . 45 mm filters . Viruses were concentrated through a 20% ( vol / vol ) sucrose cushion , and stored at −80 1C . The TCID 50 of virus stocks was determined by titration in TZM - bl cells , as described previously ( Wei et al . , 2002 ; Yap et al . , 2007 ) ."
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus type 1 (HIV-1) resistance to CCR5 antagonists, including maraviroc (MVC), results from alterations in the HIV-1 envelope glycoproteins (Env) enabling recognition of antagonist-bound CCR5. Here, we characterized tropism alterations for CD4+ T-cell subsets and macrophages by Envs from two subjects who developed MVC resistance in vivo, which displayed either relatively efficient or inefficient recognition of MVC-bound CCR5. We show that MVC-resistant Env with efficient recognition of drug-bound CCR5 displays a tropism shift for CD4+ T-cell subsets associated with increased infection of central memory T-cells and reduced infection of effector memory and transitional memory T-cells, and no change in macrophage infectivity. In contrast, MVC-resistant Env with inefficient recognition of drug-bound CCR5 displays no change in tropism for CD4+ T-cell subsets, but exhibits a significant reduction in macrophage infectivity. The pattern of HIV-1 tropism alterations for susceptible cells may therefore be variable in subjects with MVC resistance.
    Virology 04/2013; 442(1). DOI:10.1016/j.virol.2013.03.026 · 3.28 Impact Factor
  • Source
    • "positively associated with treatment experience in a 345 subtype-B-infected patient cohort (Dau et al., 2010). Associations of these and other CN mutations with drug exposure and TAMs has also been confirmed through other subtype-B-infected patient cohorts and in vitro studies (Cane et al., 2007; Dau et al., 2010; Ehteshami et al., 2008; Gupta et al., 2010; Hachiya et al., 2008; Lengruber et al., 2011; Michels et al., 2010; Price et al., 2010; von Wyl et al., 2010a; von Wyl et al., 2010b; Waters et al., 2009; Yap et al., 2007) Recently, CN mutation A360V was shown to be selected in subtype-B-infected patients receiving AZT monotherapy (Brehm et al., 2012b). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the connection subdomain (CN) and RNase H domain (RH) of HIV-1 reverse transcriptase (RT) from subtype B-infected patients enhance nucleoside and nonnucleoside RT inhibitor (NRTI and NNRTI) resistance by affecting the balance between polymerization and RNase H activity. To determine whether CN mutations in subtype C influence drug sensitivity, single genome sequencing was performed on Brazilian subtype C-infected patients failing RTI therapy. CN mutations identified were similar to subtype B, including A376S, A400T, Q334D, G335D, N348I, and A371V, and increased AZT resistance in the presence of thymidine analog mutations. CN mutations also enhanced NNRTI resistance in the presence of classical NNRTI mutations: etravirine resistance was enhanced 6- to 11-fold in the presence of L100I/K103N/Y181C. These results indicate that selection of CN mutations in treatment-experienced patients also occurs in subtype-C-infected patients and are likely to provide valuable information in predicting clinical RTI resistance.
    Virology 10/2012; 435(2). DOI:10.1016/j.virol.2012.09.021 · 3.28 Impact Factor
Show more