FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells.

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
Cell Metabolism (Impact Factor: 14.62). 01/2008; 6(6):472-83. DOI: 10.1016/j.cmet.2007.11.004
Source: PubMed

ABSTRACT Muscle atrophy occurs in many pathological states and results primarily from accelerated protein degradation and activation of the ubiquitin-proteasome pathway. However, the importance of lysosomes in muscle atrophy has received little attention. Activation of FoxO transcription factors is essential for the atrophy induced by denervation or fasting, and activated FoxO3 by itself causes marked atrophy of muscles and myotubes. Here, we report that FoxO3 does so by stimulating overall protein degradation and coordinately activating both lysosomal and proteasomal pathways. Surprisingly, in C2C12 myotubes, most of this increased proteolysis is mediated by lysosomes. Activated FoxO3 stimulates lysosomal proteolysis in muscle (and other cell types) by activating autophagy. FoxO3 also induces the expression of many autophagy-related genes, which are induced similarly in mouse muscles atrophying due to denervation or fasting. These studies indicate that decreased IGF-1-PI3K-Akt signaling activates autophagy not only through mTOR but also more slowly by a transcription-dependent mechanism involving FoxO3.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD), the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity, and chronic local inflammation leading to substitution of myofibers by connective and adipose tissue. DMD patients suffer from continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. Autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates, and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels, it can be detrimental and contribute to muscle wasting; at low levels, it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular level, the Akt axis is one of the key dysregulated pathways, although the molecular events are not completely understood. The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signaling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.
    Frontiers in Aging Neuroscience 01/2014; 6:188. · 5.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excess lipid accumulation resulting from an elevated supply of plasma fatty acids is linked to the pathogenesis of the metabolic syndrome and heart disease. The term ‘lipotoxicity’ was coined to describe how lipid accumulation leads to cellular dysfunction and death in non-adipose tissues including the heart, pancreas and liver. While lipotoxicity has been shown in cultured skeletal muscle cells, the degree of lipotoxicity in vivo and the functional consequences are unresolved. We studied three models of fatty acid overload in male mice: 5 h Intralipid® and heparin infusion, prolonged high fat feeding (HFF) and genetic obesity induced by leptin deficiency (ob/ob mice). Markers of apoptosis, proteolysis and autophagy were assessed as readouts of lipotoxicity. The Intralipid® infusion increased caspase 3 activity in skeletal muscle, demonstrating that enhancing fatty acid flux activates pro-apoptotic pathways. HFF and genetic obesity increased tissue lipid content but did not influence apoptosis. Gene array analysis revealed that HFF reduced the expression of 31 pro-apoptotic genes. Markers of autophagy (LC3β and beclin-1 expression) were unaffected by HFF and were associated with enhanced Bcl2 protein expression. Proteolytic activity was similarly unaffected by HFF or in ob/ob mice. Thus, contrary to our previous findings in muscle culture in vitro and in other non-adipose tissues in vivo, lipid overload did not induce apoptosis, autophagy or proteolysis in skeletal muscle. A broad transcriptional suppression of pro-apoptotic proteins may explain this resistance to lipid-induced cell death in skeletal muscle.
    The Journal of Physiology 03/2009; 587(7):1593 - 1605. · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pro-inflammatory and stress-activated signalling pathways are important role players in the pathogenesis of obesity and insulin resistance. Obesity and type II diabetes are associated with chronic, low-grade inflammation and elevated tumour necrosis factor-α (TNF-α) levels. There is increasing evidence that TNF-α may play a critical role in skeletal muscle atrophy. However, the effects of obesity-induced insulin resistance on these signalling pathways are poorly understood in skeletal muscle. Therefore, the present study addressed the effects of obesity-induced insulin resistance on the activity of the ubiquitin ligases, nuclear factor-B, p38 MAPK and phosphoinositide 3-kinase signalling pathways in the gastrocnemius muscle and compared these with muscle of standard chow-fed control rats. Male Wistar rats were randomly allocated to a control diet group (standard commercial chow; 60% carbohydrates, 30% protein and 10% fat) or a cafeteria diet group (65% carbohydrates, 19% protein and 16% fat) for 16 weeks. Blood analysis was conducted to determine the impact of the model of obesity on circulating insulin, glucose, free fatty acids, TNF-α and angiotensin II concentrations. The experimental animals were 18% heavier and had 68% greater visceral fat mass than their control counterparts and were dyslipidaemic. Significant increases in the ubiquitin ligase and MuRF-1, as well as in caspase-3 and poly-ADP-ribose polymerase cleavage were observed in the muscle of obese animals compared with the control rats. We propose that dyslipidaemia may be a mechanism for the activation of inflammatory/stress-activated signalling pathways in obesity and type II diabetes, which will lead to apoptosis and atrophy in skeletal muscle.
    Experimental physiology 10/2010; 96(2):179-93. · 3.17 Impact Factor