CD150- side population cells represent a functionally distinct population of long-term hematopoietic stem cells.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
Blood (Impact Factor: 9.78). 03/2008; 111(4):2444-51. DOI: 10.1182/blood-2007-09-115006
Source: PubMed

ABSTRACT Hematopoietic stem cells (HSCs) are a self-renewing population of bone marrow cells that replenish the cellular elements of blood throughout life. HSCs represent a paradigm for the study of stem-cell biology, because robust methods for prospective isolation of HSCs have facilitated rigorous characterization of these cells. Recently, a new isolation method was reported, using the SLAM family of cell-surface markers, including CD150 (SlamF1), to offer potential advantages over established protocols. We examined the overlap between SLAM family member expression with an established isolation scheme based on Hoechst dye efflux (side population; SP) in conjunction with canonical HSC cell-surface markers (Sca-1, c-Kit, and lineage markers). Importantly, we find that stringent gating of SLAM markers is essential to achieving purity in HSC isolation and that the inclusion of canonical HSC markers in the SLAM scheme can greatly augment HSC purity. Furthermore, we observe that both CD150(+) and CD150(-) cells can be found within the SP population and that both populations can contribute to long-term multilineage reconstitution. Thus, using SLAM family markers to isolate HSCs excludes a substantial fraction of the marrow HSC compartment. Interestingly, these 2 subpopulations are functionally distinct, with respect to lineage output as well as proliferative status.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cells (HSCs) are the best-characterized tissue-specific stem cells, yet experimental study of HSCs remains challenging, as they are exceedingly rare and methods to purify them are cumbersome. Moreover, genetic tools for specifically investigating HSC biology are lacking. To address this we sought to identify genes uniquely expressed in HSCs within the hematopoietic system and to develop a reporter strain that specifically labels them. Using microarray profiling we identified several genes with HSC-restricted expression. Generation of mice with targeted reporter knock-in/knock-out alleles of one such gene, Fgd5, revealed that though Fgd5 was required for embryonic development, it was not required for definitive hematopoiesis or HSC function. Fgd5 reporter expression near exclusively labeled cells that expressed markers consistent with HSCs. Bone marrow cells isolated based solely on Fgd5 reporter signal showed potent HSC activity that was comparable to stringently purified HSCs. The labeled fraction of the Fgd5 reporter mice contained all HSC activity, and HSC-specific labeling was retained after transplantation. Derivation of next generation mice bearing an Fgd5-CreERT2 allele allowed tamoxifen-inducible deletion of a conditional allele specifically in HSCs. In summary, reporter expression from the Fgd5 locus permits identification and purification of HSCs based on single-color fluorescence.
    Journal of Experimental Medicine 06/2014; · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the homeostatic behavior of hematopoietic stem and progenitor cells (HSPCs) temporally defined according to their divisional histories using an HSPC-specific GFP label-retaining system. We show that homeostatic hematopoietic stem cells (HSCs) lose repopulating potential after limited cell divisions. Once HSCs exit dormancy and accrue divisions, they also progressively lose the ability to return to G0 and functional activities associated with quiescent HSCs. In addition, dormant HSPCs phenotypically defined as multipotent progenitor cells display robust stem cell activity upon transplantation, suggesting that temporal quiescence is a greater indicator of function than cell-surface phenotype. Our studies suggest that once homeostatic HSCs leave dormancy, they are slated for extinction. They self-renew phenotypically, but they lose self-renewal activity. As such, they question self-renewal as a characteristic of homeostatic, nonperturbed HSCs in contrast to self-renewal demonstrated under stress conditions.
    Stem cell reports. 04/2014; 2(4):473-90.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although extremely rare, hematopoietic stem cells (HSCs) are divisible into subsets that differ with respect to differentiation potential and cell surface marker expression. For example, we recently found that CD86- CD150+ CD48- HSCs have limited potential for lymphocyte production. This could be an important new tool for studying hematological abnormalities. Here, we analyzed HSC subsets with a series of stem cell markers in JAK2V617F transgenic (Tg) mice, where the mutation is sufficient to cause myeloproliferative neoplasia with lymphocyte deficiency. Total numbers of HSC were elevated 3 to 20 fold in bone marrow of JAK2V617F mice. Careful analysis suggested the accumulation involved multiple HSC subsets, but particularly those characterized as CD150HI CD86- CD18L°CD41+ and excluding Hoechst dye. Real-Time PCR analysis of their HSC revealed that the erythropoiesis associated gene transcripts Gata1, Klf1 and Epor were particularly high. Flow cytometry analyses based on two differentiation schemes for multipotent progenitors (MPP) also suggested alteration by JAK2 signals. The low CD86 on HSC and multipotent progenitors paralleled the large reductions we found in lymphoid progenitors, but the few that were produced functioned normally when sorted and placed in culture. Either of two HSC subsets conferred disease when transplanted. Thus, flow cytometry can be used to observe the influence of abnormal JAK2 signaling on stem and progenitor subsets. Markers that similarly distinguish categories of human HSCs might be very valuable for monitoring such conditions. They could also serve as indicators of HSC fitness and suitability for transplantation.
    PLoS ONE 04/2014; 9(4):e93643. · 3.53 Impact Factor