Article

Multicenter phase 3 study of the complement inhibitor eculizumab for the treatment of patients with paroxysmal nocturnal hemoglobinuria

Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
Blood (Impact Factor: 9.78). 02/2008; 111(4):1840-7. DOI: 10.1182/blood-2007-06-094136
Source: PubMed

ABSTRACT The terminal complement inhibitor eculizumab was recently shown to be effective and well tolerated in patients with paroxysmal nocturnal hemoglobinuria (PNH). Here, we extended these observations with results from an open-label, non-placebo-controlled, 52-week, phase 3 clinical safety and efficacy study evaluating eculizumab in a broader PNH patient population. Eculizumab was administered by intravenous infusion at 600 mg every 7 +/- 2 days for 4 weeks; 900 mg 7 +/- 2 days later; followed by 900 mg every 14 +/- 2 days for a total treatment period of 52 weeks. Ninety-seven patients at 33 international sites were enrolled. Patients treated with eculizumab responded with an 87% reduction in hemolysis, as measured by lactate dehydrogenase levels (P < .001). Baseline fatigue scores in the FACIT-Fatigue instrument improved by 12.2 +/- 1.1 points (P < .001). Eculizumab treatment led to an improvement in anemia. The increase in hemoglobin level occurred despite a reduction in transfusion requirements from a median of 8.0 units of packed red cells per patient before treatment to 0.0 units per patient during the study (P < .001). Overall, transfusions were reduced 52% from a mean of 12.3 to 5.9 units of packed red cells per patient. Forty-nine patients (51%) achieved transfusion independence for the entire 52-week period. Improvements in hemolysis, fatigue, and transfusion requirements with eculizumab were independent of baseline levels of hemolysis and degree of thrombocytopenia. Quality of life measures were also broadly improved with eculizumab treatment. This study demonstrates that the beneficial effects of eculizumab treatment in patients with PNH are applicable to a broader population of PNH patients than previously studied. This trial is registered at http://clinicaltrials.gov as NCT00130000.

0 Followers
 · 
97 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by a hypercoagulable state associated with acute hemolysis. Eculizumab is used to reduce the intensity of intravascular hemolysis in PNH patients. The hemostatic status of three patients with PNH was assessed during eculizumab treatment by D-dimer assay and the global assays: thromboelastography (TEG), thrombin generation test (TGТ), and thrombodynamics (TD). In the state of hemolytic crisis before the therapy D-dimer concentration was increased in two patients accompanied by hypercoagulation changes in TEG parameter angle (α). TD parameter the clot growth velocity (V) revealed hypercoagulability while TGT parameter ETP was within the normal range in all patients. The lactate dehydrogenase (LDH) activity decreased during the 8months of eculizumab therapy. The physical health was improved, the frequency of hemolytic crisis decreased. Patients periodically exhibited hypercoagulable state: the mean values α=38±11° (with normal range 20-40°), ETP=1311±442nM·min (with normal range 800-1560nM·min), V=31±4μm/min (with normal range 20-29μm/min). During the eculizumab therapy two patients had the repeated clinical manifestation of acute hemolytic crisis, the parameters of the global tests were increased compared to the previous measurement. The global hemostasis tests TEG, TGT and TD revealed hypercoagulability in patients with PNH during eculizumab therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
    Blood Cells Molecules and Diseases 12/2014; 54(2). DOI:10.1016/j.bcmd.2014.11.021 · 2.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atypical hemolytic uremic syndrome (aHUS) is a prototypic thrombotic microangiopathy attributable to complement dysregulation. In the absence of complement inhibition, progressive clinical deterioration occurs. The authors postulated that a biopsy of normal skin could corroborate the diagnosis of aHUS through the demonstration of vascular deposits of C5b-9. Biopsies of normal skin from 22 patients with and without aHUS were processed for routine light microscopy and immunofluorescent studies. An assessment was made for vascular C5b-9 deposition immunohistochemically and by immunofluorescence. The biopsies were obtained primarily from the forearm and/or deltoid. Patients with classic features of aHUS showed insidious microvascular changes including loose luminal platelet thrombi, except in 2 patients in whom a striking thrombogenic vasculopathy was apparent in biopsied digital ulcers. Extensive microvascular deposits of the membrane attack complex/C5b-9 were identified, excluding 1 patient in whom eculizumab was initiated before biopsy. In 5 of the 7 patients where follow-up was available, the patients exhibited an excellent treatment response to eculizumab. Patients without diagnostic clinical features of aHUS failed to show significant vascular deposits of complement, except 2 patients with thrombotic thrombocytopenic purpura including 1 in whom a Factor H mutation was identified. In a clinical setting where aHUS is an important diagnostic consideration, extensive microvascular deposition of C5b-9 supports the diagnosis of either aHUS or a subset of thrombotic thrombocytopenic purpura patients with concomitant complement dysregulation; significant vascular C5b-9 deposition predicts clinical responsiveness to eculizumab.
    The American Journal of dermatopathology 05/2015; 37(5):349-359. DOI:10.1097/DAD.0000000000000234 · 1.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Final diagnosis of paroxysmal nocturnal hemoglobinuria (PNH) may take years demanding a quick diagnosis measure. We used the facts that PNH cells are damaged in acid, and reagents for measuring reticulocytes in Coulter DxH800 (Beckman Coulter, USA) are weakly acidic and hypotonic, to create a new PNH screening marker. We analyzed 979 complete blood counts (CBC) data from 963 patients including 57 data from 44 PNH patients. Standard criteria for PNH assay for population selection were followed: flow cytometry for CD55 and CD59 on red blood cells (RBCs) to a detection level of 1%; and fluorescent aerolysin, CD24 and CD15 in granulocytes to 0.1%. Twenty-four PNH minor clone-positive samples (minor-PNH+) were taken, in which the clone population was <5% of RBCs and/or granulocytes. Excluding PNH and minor-PNH+ patients, the population was divided into anemia, malignancy, infection, and normal groups. Parameters exhibiting a distinct demarcation between PNH and non-PNH groups were identified, and each parameter cutoff value was sought that includes the maximum [minimum] number of PNH [non-PNH] patients. Cutoff values for 5 selected CBC parameters (MRV, RDWR, MSCV, MN-AL2-NRET, and IRF) were determined. Positive rates were: PNH (86.0%), minor-PNH+ (33.3%), others (5.0%), anemia (13.4%), malignancy (5.3%), infection (3.7%), normal (0.0%); within anemia group, aplastic anemia (40.0%), immune hemolytic anemia (11.1%), iron deficiency anemia (1.6%). Sensitivity (86.0%), specificity (95.0%), PPV (52.1%), and NPV (99.1%) were achieved in PNH screening. A new PNH screening marker is proposed with 95% specificity and 86% sensitivity. The flag identifies PNH patients, reducing time to final diagnosis by flow cytometry.
    Annals of Laboratory Medicine 01/2015; 35(1):35-40. DOI:10.3343/alm.2015.35.1.35 · 1.48 Impact Factor

Full-text (2 Sources)

Download
33 Downloads
Available from
Jun 3, 2014