Mechanism of retinoblastoma tumor cell death after focal chemotherapy, radiation, and vascular targeting therapy in a mouse model.

Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida 33101, USA..
Investigative Ophthalmology &amp Visual Science (Impact Factor: 3.66). 01/2008; 48(12):5371-6. DOI: 10.1167/iovs.07-0708
Source: PubMed

ABSTRACT To evaluate the mechanism and timing of retinal tumor cell death in the LH(BETA)T(AG) mouse model of retinoblastoma after treatment with vascular targeting therapies and conventional therapies (focal chemotherapy and radiation).
For vascular targeting therapy, 12- or 16-week-old mice were treated with a single subconjunctival injection of either anecortave acetate (300 microg) or combretastatin A4 (1.5 mg). Eyes were analyzed at 1 day and 1 week after treatment. Tumor cell death was evaluated using TUNEL assays or immunofluorescence analysis of activated caspase 3 to detect apoptosis. Histopathologic analysis was performed to identify areas of necrosis. For conventional therapy, LH(BETA)T(AG) mice were treated with six serial subconjunctival injections of focally delivered carboplatin chemotherapy (100 microg/delivery) or hyperfractionated external beam radiotherapy (EBRT; 15 Gy total dose). Cell death was analyzed by TUNEL assay.
The highest levels of apoptotic cell death were seen 1 day after treatment in all treatment groups compared with vehicle controls. At 1 week after treatment, apoptotic cell death remained significantly elevated in the EBRT and carboplatin groups, but not after vessel targeting therapy. No significant necrosis was detected by histology in tumors of treated or of control eyes.
Conventional therapies (focal carboplatin chemotherapy and EBRT) and vascular targeting agents significantly increase cell death through apoptosis, while not having a significant effect on necrosis in this murine model of retinoblastoma. These studies will aid in the optimization of delivery schemes of combined treatment modalities.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities.Methods: This paper presents a comparison of dose distributions generated by the three approaches-a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCT scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes.Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise.Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.
    Medical Physics 01/2014; 41(1):011710. · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in animal models of retinoblastoma have accelerated research in this field, aiding in understanding tumor progression and assessing therapeutic modalities. The distinct pattern of mutations and specific location of this unique intraocular tumor have paved the way for two types of models- those based on genetic mutations, and xenograft models. Retinoblastoma gene knockouts with an additional loss of p107, p130, p53 and using promoters of Nestin, Chx10, and Pax6 genes show histological phenotypic changes close to the human form of retinoblastoma. Conditional knockout in specific layers of the developing retina has thrown light on the origin of this tumor. The use of xenograft models has overcome the obstacle of time delay in the presentation of symptoms, which remains a crucial drawback of genetic models. With the advances in molecular and imaging technologies, the current research aims to develop models that mimic all the features of retinoblastoma inclusive of its initiation, progression and metastasis. The combination of genetic and xenograft models in retinoblastoma research has and will help to pave way for better understanding of retinoblastoma tumor biology and also in designing and testing effective diagnostic and treatment modalities.
    Saudi Journal of Ophthalmology 07/2013; 27(3):141-6.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We critically analyze available peer-reviewed literature, including clinical trials and case reports, on local ocular cancer treatments. Recent innovations in many areas of ocular oncology have introduced promising new therapies, but, for the most part, the optimal treatment of ocular malignancies remains elusive.
    Survey of Ophthalmology 10/2013; · 3.51 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014