Article

Thrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance

Central Arkansas Veterans Healthcare System, 598/151 LR, 4300 West 7th St., Little Rock, AR 72205, USA.
Diabetes (Impact Factor: 7.9). 02/2008; 57(2):432-9. DOI: 10.2337/db07-0840
Source: PubMed

ABSTRACT We examined the relationship between the expression of thrombospondin (TSP)1, an antiangiogenic factor and regulator of transforming growth factor-beta activity, obesity, adipose inflammation, and insulin resistance.
TSP1 gene expression was quantified in subcutaneous adipose tissue (SAT) of 86 nondiabetic subjects covering a wide range of BMI and insulin sensitivity, from visceral adipose (VAT) and SAT from 14 surgical patients and from 38 subjects with impaired glucose tolerance randomized to receive either pioglitazone or metformin for 10 weeks. An adipocyte culture system was also used to assess the effects of pioglitazone and coculture with macrophages on TSP1 gene expression.
TSP1 mRNA was significantly associated with obesity (BMI) and insulin resistance (low insulin sensitivity index). Relatively strong positive associations were seen with markers of inflammation, including CD68, macrophage chemoattractant protein-1, and plasminogen activator inhibitor (PAI)-1 mRNA (r >/= 0.46, P = 0.001 for each), that remained significant after controlling for BMI and S(i). However, TSP1 mRNA was preferentially expressed in adipocyte fraction, whereas inflammatory markers predominated in stromal vascular fraction. Coculture of adipocytes and macrophages augmented TSP1 gene expression and secretion from both cell types. Pioglitazone (not metformin) treatment resulted in a 54% decrease (P < 0.04) in adipose TSP gene expression, as did in vitro pioglitazone treatment of adipocytes.
TSP1 is a true adipokine that is highly expressed in obese, insulin-resistant subjects; is highly correlated with adipose inflammation; and is decreased by pioglitazone. TSP1 is an important link between adipocytes and macrophage-driven adipose tissue inflammation and may mediate the elevation of PAI-1 that promotes a prothrombotic state.

0 Bookmarks
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias, and sudden cardiac death in obese subjects. This review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiological alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis, and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiological alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation, and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes, and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the renin-angiotensin-aldosterone system, induction of transforming growth factor β, oxidative stress, advanced glycation end-products, endothelin 1, Rho-kinase signaling, leptin-mediated actions, and upregulation of matricellular proteins (such as thrombospondin 1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response after cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to the development of novel therapies to prevent heart failure and attenuate postinfarction cardiac remodeling in patients with obesity.
    Translational Research 05/2014; DOI:10.1016/j.trsl.2014.05.001 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matricellular proteins are extracellular macromolecules that do not serve a structural role, but when incorporated into the matrix, modulate cell:cell and cell:matrix interactions. The matricellular protein thrombospondin (TSP)-1, a potent angiostatic mediator and activator of transforming growth factor (TGF)-β, is upregulated in diabetes and obesity and may be involved in the pathogenesis of metabolic dysregulation and organ dysfunction. This manuscript discusses recently published observations on the role of TSP-1 in metabolic disease. In obesity models induced by a high-fat diet, adipose tissue TSP-1 upregulation induces inflammation and promotes weight gain and metabolic dysfunction. TSP-1 may have direct effects on adipocyte proliferation and fatty acid uptake. In diabetic subjects, TSP-1 upregulation in kidney, myocardium, and vascular tissue may promote dysfunction. In the myocardium, TSP-1 upregulation may transduce angiostatic signals inducing vascular rarefaction. Dissection of the functional domains involved in TSP-1 actions may lead to the development of peptide-based strategies for treatment of diabetes and its complications.
    01/2014; 3(1):81-4. DOI:10.4161/adip.26990
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids (GCs) are critical in the regulation of the stress response, inflammation and energy homeostasis. Excessive GC exposure results in whole-body insulin resistance, obesity, cardiovascular disease, and ultimately decreased survival, despite their potent anti-inflammatory effects. This apparent paradox may be explained by the complex actions of GCs on adipose tissue functionality. The wide prevalence of oral GC therapy makes their adverse systemic effects an important yet incompletely understood clinical problem. This article reviews the mechanisms by which supraphysiologic GC exposure promotes insulin resistance, focusing in particular on the effects on adipose tissue function and lipid metabolism.
    Endocrinology and metabolism clinics of North America 03/2014; 43(1):75-102. DOI:10.1016/j.ecl.2013.10.005 · 3.56 Impact Factor

Full-text (2 Sources)

Download
9 Downloads
Available from
Oct 16, 2014