Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts.

Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
Nature Biotechnology (Impact Factor: 39.08). 02/2008; 26(1):101-6. DOI: 10.1038/nbt1374
Source: PubMed

ABSTRACT Direct reprogramming of somatic cells provides an opportunity to generate patient- or disease-specific pluripotent stem cells. Such induced pluripotent stem (iPS) cells were generated from mouse fibroblasts by retroviral transduction of four transcription factors: Oct3/4, Sox2, Klf4 and c-Myc. Mouse iPS cells are indistinguishable from embryonic stem (ES) cells in many respects and produce germline-competent chimeras. Reactivation of the c-Myc retrovirus, however, increases tumorigenicity in the chimeras and progeny mice, hindering clinical applications. Here we describe a modified protocol for the generation of iPS cells that does not require the Myc retrovirus. With this protocol, we obtained significantly fewer non-iPS background cells, and the iPS cells generated were consistently of high quality. Mice derived from Myc(-) iPS cells did not develop tumors during the study period. The protocol also enabled efficient isolation of iPS cells without drug selection. Furthermore, we generated human iPS cells from adult dermal fibroblasts without MYC.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Molecular and cell biology has resulted in major advances in our understanding of disease pathogenesis as well as in novel strategies for the diagnosis, therapy and prevention of human diseases. Based on modern molecular, genetic and biochemical methodologies, it is on the one hand possible to identify disease-related point mutations and single nucleotide polymorphisms, for example. On the other hand, using high throughput array and other technologies, it is for example possible to simultaneously analyze thousands of genes or gene products (RNA and proteins), resulting in an individual gene or gene expression profile (‘signature’). Such data increasingly allow defining the individual disposition for a given disease and predicting disease prognosis as well as the efficacy of therapeutic strategies in the individual patient (‘personalized medicine’). At the same time, the basic discoveries in cell biology, including embryonic and adult stem cells, induced pluripotent stem cells, genetically modified cells and others, have moved regenerative medicine into the center of biomedical research worldwide with a major translational impact on tissue engineering as well as transplantation medicine. All these aspects have greatly contributed to the recent advances in regenerative medicine and the development of novel concepts for the treatment of many human diseases, including liver diseases.
    Hepatology International 04/2014; 8(2):158-165. · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Every cell type is characterized by a specific transcriptional profile together with a unique epigenetic landscape. Reprogramming factors such as Oct4, Klf4, Sox2 and c-Myc enable somatic cells to change their transcriptional profile and convert them to pluripotent cells. Small molecules such as BIX-01294, Bay K8644, RG-108 and valproic acid (VPA) are reported as effective molecules for enhancing induction of pluripotency in vitro, however, their effects during in vivo reprogramming are addressed in this experimental study. In this experimental study, Oct4 expressing lentiviral particles and small molecules BIX-01294, Bay K8644 and RG-108 were injected into the right ventricle of mice brain and VPA was systematically administered as oral gavages. Animals treated with different combinations of small molecules for 7 or 14 days in concomitant with Oct4 exogenous expression were compared for expression of pluripotency markers. Total RNA was isolated from the rims of the injected ventricle and quantitative polymerase chain reaction (PCR) was performed to evaluate the expression of endogenous Oct4, Nanog, c-Myc, klf4 and Sox2 as pluripotency markers, and Pax6 and Sox1 as neural stem cell (NSC) markers. Results showed that Oct4 exogenous expression for 7 days induced pluripoten- cy slightly as it was detected by significant enhancement in expression of Nanog (p<0.05). Combinatorial administration of Oct4 expressing vector and BIX-01294, Bay K8644 and RG-108 did not affect the expression of pluripotency and NSC markers, but VPA treatment along with Oct4 exogenous expression induced Nanog, Klf4 and c-Myc (p<0.001). VPA treatment before the induction of exogenous Oct4 was more effective and significantly increased the expression of endogenous Oct4, Nanog, Klf4, c-Myc (p<0.01), Pax6 and Sox1 (p<0.001). These results suggest VPA as the best enhancer of pluripotency among the chemicals tested, especially when applied prior to pluripotency induction by Oct4.
    Cell Journal 01/2015; 16(4):416-425. · 0.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we described the safety and therapeutic potential of neurospheres (NSs) derived from a human induced pluripotent stem cell (iPSC) clone, 201B7, in a spinal cord injury (SCI) mouse model. However, several safety issues concerning iPSC-based cell therapy remain unresolved. Here, we investigated another iPSC clone, 253G1, that we established by transducing OCT4, SOX2, and KLF4 into adult human dermal fibroblasts collected from the same donor who provided the 201B7 clone. The grafted 253G1-NSs survived, differentiated into three neural lineages, and promoted functional recovery accompanied by stimulated synapse formation 47 days after transplantation. However, long-term observation (for up to 103 days) revealed deteriorated motor function accompanied by tumor formation. The tumors consisted of Nestin(+) undifferentiated neural cells and exhibited activation of the OCT4 transgene. Transcriptome analysis revealed that a heightened mesenchymal transition may have contributed to the progression of tumors derived from grafted cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Stem cell reports. 02/2015; 14.


Available from