Article

Mechanisms of Cables 1 gene inactivation in human ovarian cancer development

Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachussetts 02114, USA.
Cancer biology & therapy (Impact Factor: 3.63). 03/2008; 7(2):180-88. DOI: 10.4161/cbt.7.2.5253
Source: PubMed

ABSTRACT Cables 1, a cyclin-dependent kinase binding protein, is primarily involved in cell cycle regulation. Loss of nuclear Cables 1 expression is observed in human colon, lung and endometrial cancers. We previously reported that loss of nuclear Cables 1 expression was also observed with high frequency in a limited sample set of human ovarian carcinomas, although the mechanisms underlying loss of nuclear Cables 1 expression remained unknown. Our present objective was to examine Cables 1 expression in ovarian cancer in greater detail, and determine the predominant mechanisms of Cables 1 loss. We assessed potential genetic and epigenetic modifications of the Cables 1 locus through analyses of mutation, polymorphisms, loss of heterozygosity and DNA methylation. We observed a marked loss of nuclear Cables 1 expression in serous and endometrioid ovarian carcinomas that correlated with decreased Cables 1 mRNA levels. Although we detected no Cables 1 mutations, there was evidence of LOH at the Cables 1 locus and epigenetic modification of the Cables 1 promoter region in a subset of ovarian carcinomas and established cancer cell lines. From a functional perspective, over-expression of Cables 1 induced apoptosis, whereas, knockdown of Cables 1 negated this effect. Together these findings suggest that multiple mechanisms underlie the loss of Cables 1 expression in ovarian cancer cells, supporting the hypothesis that Cables 1 is a tumor suppressor in human ovarian cancer.

Download full-text

Full-text

Available from: Takehiro Serikawa, Jul 06, 2015
0 Followers
 · 
170 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.
    Biochemical and Biophysical Research Communications 06/2010; 396(4):915-20. DOI:10.1016/j.bbrc.2010.05.022 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The p63 gene product regulates epithelial morphogenesis and female germline integrity. In this study, we show that cyclin-dependent kinase 5 and Abl enzyme substrate 1 (Cables1) interacts with the trans-activating (TA) p63alpha isoform to protect it from proteasomal degradation. Using the female germline of Cables1-null mice as an in vivo model, we demonstrate further that oocytes lacking Cables1 exhibit lower basal levels of TAp63alpha and reduced accumulation of phosphorylated TAp63alpha in response to genotoxic stress. This in turn enhances the survival of these cells after ionizing radiation exposure. Thus, Cables1 modulates p63 protein stability and function during genotoxic stress.
    EMBO Reports 08/2010; 11(8):633-9. DOI:10.1038/embor.2010.82 · 7.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway.
    Molecular Reproduction and Development 01/2011; 78(1):22-32. DOI:10.1002/mrd.21263 · 2.68 Impact Factor