High mobility group (HMG-box) genes in the honeybee fungal pathogen Ascosphaera apis

Baylor College of Medicine, Houston, Texas, United States
Mycologia (Impact Factor: 2.13). 07/2007; 99(4):553-61. DOI: 10.3852/mycologia.99.4.553
Source: PubMed

ABSTRACT The genome of the honeybee fungal pathogen Ascosphaera apis (Maassen) encodes three putative high mobility group (HMG-box) transcription factors. The predicted proteins (MAT1-2, STE11 and HTF), each of which contain a single strongly conserved HMG-box, exhibit high similarity to mating type proteins and STE11-like transcription factors previously identified in other ascomycete fungi, some of them important plant and human pathogens. In this study we characterized the A. apis HMG-box containing genes and analyzed the structure of the mating type locus (MAT1-2) and its flanking regions. The MAT1-2 locus contains a single gene encoding a protein with an HMG-box. We also have determined the transcriptional patterns of all three HMG-box containing genes in both mating type idiomorphs and discuss a potential role of these transcription factors in A. apis development and reproduction. A multiplex PCR method with primers amplifying mat1-2-1 and Ste11 gene fragments is described. This new method allows for identification of a single mating type idiomorph and might become an essential tool for applied and basic research of chalkbrood disease in honeybees.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chalkbrood susceptibility of in vitro reared honey bee larvae was investigated. Larvae were grafted from 3–4 colonies headed by pure mated queens of Apis mellifera carnica, A. m. ligustica and A. m. mellifera, respectively. Three day old larvae were fed with different dosages of Ascophaera apis spores and a clear dose-response relationship was shown. Over the whole experiment LD$_{50}$ estimates ranged from 55 to 905 spores. The response differed significantly (up to a factor ten) between colonies of the same subspecies. The mean time to death decreased with increased dose, with more larvae dying faster after eating more fungal spores. The A. m. ligustica larvae used in this study were less susceptible to A. apis than A. m. mellifera and A. m. carnica larvae. However due to the limited number of colonies included and the high variation shown we cannot predict that any A. m. ligustica colony is better adapted to cope with A. apis than colonies of A. m. carnica and A. m. mellifera.
    Apidologie 09/2009; DOI:10.1051/apido/2009029 · 1.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chalkbrood is a fungal disease of honey bee brood caused by Ascosphaera apis. This disease is now found throughout the world, and there are indications that chalkbrood incidence may be on the rise. In this review we consolidate both historic knowledge and recent scientific findings. We document the worldwide spread of the fungus, which is aided by increased global travel and the migratory nature of many beekeeping operations. We discuss the current taxonomic classification in light of the recent complete reworking of fungal systematics brought on by application of molecular methods. In addition, we discuss epidemiology and pathogenesis of the disease, as well as pathogen biology, morphology and reproduction. New attempts at disease control methods and management tactics are reviewed. We report on research tools developed for identification and monitoring, and also include recent findings on genomic and molecular studies not covered by previous reviews, including sequencing of the A. apis genome and identification of the mating type locus.
    Journal of Invertebrate Pathology 09/2009; 103 Suppl 1:S20-9. DOI:10.1016/j.jip.2009.06.018 · 2.60 Impact Factor