The plasma pharmacokinetics of R-(+)-lipoic acid administered as sodium R-(+)-lipoate to healthy human subjects.

GeroNova Research, Inc., 4677 Meade St, Richmond, California 94804, USA.
Alternative medicine review: a journal of clinical therapeutic (Impact Factor: 4.86). 01/2008; 12(4):343-51.
Source: PubMed

ABSTRACT The racemic mixture, RS-(+/-)-alpha-lipoic acid (rac-LA) has been utilized clinically and in a variety of disease models. Rac-LA and the natural form, R-lipoic acid (RLA), are widely available as nutritional supplements, marketed as antioxidants. Rac-LA sodium salt (NaLA) or rac-LA potassium salt (KLA) has been used to improve the aqueous solubility of LA. STUDY RATIONALE: Several in vitro and animal models of aging and age-related diseases have demonstrated efficacy for the oral solutions of LA salts in normalizing age-related changes to those of young animals. Other models and studies have demonstrated the superiority of RLA, the naturally occurring isomer over rac-LA. Despite this, RLA pharmacokinetics (PK) is not fully characterized in humans, and it is unknown whether the concentrations utilized in animal models can be achieved in vivo. Due to its tendency to polymerize, RLA is relatively unstable and suffers poor aqueous solubility, leading to poor absorption and low bioavailability. A preliminary study demonstrated the stability and bioavailability were improved by converting RLA to its sodium salt (NaRLA) and pre-dissolving it in water. The current study extends earlier findings from this laboratory and presents PK data for the 600-mg oral dosing of 12 healthy adult subjects given NaRLA. In addition, the effect of three consecutive doses was tested on a single subject relative to a one-time dosing in the same subject to determine whether plasma maximum concentration (Cmax) and the area under the plasma concentration versus time curve (AUC) values were comparable to those in animal studies and those achievable via intravenous infusions in humans.
Plasma RLA was separated from protein by a modification of a published method. Standard curves were generated from spiking known concentrations of RLA dissolved in ethanol and diluted in a phosphate-buffered saline (PBS) into each individual's baseline plasma to account for inter-individual differences in protein binding and to prevent denaturing of plasma proteins. Plasma RLA content was determined by the percent recovery using high-performance liquid chromatography (electrochemical/coulometric detection) (HPLC/ECD).
As anticipated from the preliminary study, NaRLA is less prone to polymerization, completely soluble in water, and displays significantly higher Cmax and AUC values and decreased time to maximum concentration (Tmax) and T1/2 values than RLA or rac-LA. In order to significantly extend Cmax and AUC, it is possible to administer three 600-mg RLA doses (as NaRLA) at 15-minute intervals to achieve plasma concentrations similar to those from a slow (20-minute) infusion of LA. This is the first study to report negligible unbound RLA even at the highest achievable plasma concentrations.

Download full-text


Available from: Anthony Smith, May 22, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNgamma secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway.
    Journal of Neuroimmunology 07/2008; 199(1-2):46-55. DOI:10.1016/j.jneuroim.2008.05.003 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Irisin is a myokine/adipokine with potential role in obesity and diabetes. The objectives of the present study were to analyse the relationship between irisin and glucose metabolism at baseline and during an oral glucose tolerance test (OGTT) and to determine the effects of eicosapentaenoic acid (EPA) and/or α-lipoic acid treatment on irisin production in cultured human adipocytes and in vivo in healthy overweight/obese women following a weight loss program. Seventy-three overweight/obese women followed a 30 % energy-restricted diet supplemented without (control) or with EPA (1.3 g/day), α-lipoic acid (0.3 g/day) or both EPA + α-lipoic acid (1.3 + 0.3 g/day) during 10 weeks. An OGTT was performed at baseline. Moreover, human adipocytes were treated with EPA (100-200 μM) or α-lipoic acid (100-250 μM) during 24 h. At baseline plasma, irisin circulating levels were positively associated with glucose levels; however, serum irisin concentrations were not affected by the increment in blood glucose or insulin during the OGTT. Treatment with α-lipoic acid (250 μM) upregulated Fndc5 messenger RNA (mRNA) and irisin secretion in cultured adipocytes. In overweight/obese women, irisin circulating levels decreased significantly after weight loss in all groups, while no additional differences were induced by EPA or α-lipoic acid supplementation. Moreover, plasma irisin levels were positively associated with higher glucose concentrations at beginning and at endpoint of the study. The data from the OGTT suggest that glucose is not a direct contributing factor of irisin release. The higher irisin levels observed in overweight/obese conditions could be a protective response of organism to early glucose impairments.
    Journal of physiology and biochemistry 03/2015; DOI:10.1007/s13105-015-0400-5 · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral neuropathies are heterogeneous disorders presenting often with hyperalgesia and allodynia. This study has assessed if chronic constriction injury (CCI) of sciatic nerve is accompanied by increased oxidative stress and central nervous system (CNS) changes and if these changes are sensitive to treatment with thioctic acid. Thioctic acid is a naturally occurring antioxidant existing in two optical isomers (+)- and (-)-thioctic acid and in the racemic form. It has been proposed for treating disorders associated with increased oxidative stress. Sciatic nerve CCI was made in spontaneously hypertensive rats (SHRs) and in normotensive reference cohorts. Rats were untreated or treated intraperitoneally for 14 days with (+/-)-, (+)-, or (-)-thioctic acid. Oxidative stress, astrogliosis, myelin sheets status, and neuronal injury in motor and sensory cerebrocortical areas were assessed. Increase of oxidative stress markers, astrogliosis, and neuronal damage accompanied by a decreased expression of neurofilament were observed in SHR. This phenomenon was more pronounced after CCI. Thioctic acid countered astrogliosis and neuronal damage, (+)-thioctic acid being more active than (+/-)- or (-)-enantiomers. These findings suggest a neuroprotective activity of thioctic acid on CNS lesions consequent to CCI and that the compound may represent a therapeutic option for entrapment neuropathies.
    12/2013; 2013:985093. DOI:10.1155/2013/985093