Pore structural characteristics, size exclusion properties and column performance of two mesoporous amorphous silicas and their pseudomorphically transformed MCM-41 type derivatives.

Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universität, Mainz, Germany.
Journal of Separation Science (Impact Factor: 2.59). 01/2008; 30(18):3089-103. DOI: 10.1002/jssc.200700227
Source: PubMed

ABSTRACT Highly ordered mesoporous silicas such as, mobile composition of matter, MCM-41, MCM-48, and the SBA-types of materials have helped to a large extent to understand the formation mechanisms of the pore structure of adsorbents and to improve the methods of pore structural characterization. It still remains an open question whether the high order, the regularity of the pore system, and the narrow pore size distribution of the materials will lead to a substantial benefit when these materials are employed in liquid phase separation processes. MCM-41 type 10 microm beads are synthesized following the route of pseudomorphic transformation of highly porous amorphous silicas. Highly porous silicas and the pseudomorphically transformed derivatives are characterized by nitrogen sorption at 77 K and by inverse size-exclusion chromatography (ISEC) employing polystyrene standards. Applying the network model developed by Grimes, we calculated the pore connectivity n(T) of the materials. The value of n(T) varies between the percolation threshold of the lattice and values of n(T) > 10, the latter being the limiting value above which the material can be considered to be almost infinitely connected such that the ISEC behavior of the material calculated with the pore network model is the same when calculated with a parallel pore model which assumes an infinite connectivity. One should expect that the pore connectivity is reflected in the column performance, when these native and unmodified materials are packed into columns and tested with low molecular weight analytes in the Normal Phase LC mode. As found in a previous study on monolithic silicas and highly porous silicas, the slope of the plate height (HETP) - linear velocity (u) curve decreased significantly with enhanced pore connectivity of the materials. First results on the pseudomorphically transformed MCM-41 type silicas and their highly porous amorphous precursors showed that (i) the transformation did not change the pore connectivity (within the limits detectable by ISEC) from the starting material to the final product and (ii) the slope of the HETP versus u curve for dibutylphtalate did not change significantly after the pseudomorphic transformation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A brief historical survey is presented on the evaluation of silica adsorbents in analytical HPLC. The theory of analytical HPLC is mostly still being based on the height equivalent to a theoretical plate concept and the van Deemter equation that was derived from gas phase adsorption involving a linear adsorption isotherm and fast mass transfer kinetics. One can obviously wonder whether the use of the van Deemter equation is relevant and valid for the evaluation of the performance of HPLC systems, where most often the liquid solutes involve charged molecules in electrolytes and in very many cases the adsorbates are macromolecules having diffusion coefficients of small magnitude. Instead of the van Deemter equation, a multi-scale modelling approach that involves microscopic and macroscopic dynamic non-linear mass-transfer-rate models should be employed. Furthermore, advanced experimental methods for the characterisation of porous media and the distribution of the density of immobilised active sites (e.g., ligands) on surfaces as well as microscopic pore-network modelling and molecular dynamics modelling and simulation methods could be used for the design of novel adsorbents whose porous structures and immobilised active sites would provide effective mass transport and adsorption rates for realising efficient separations as well as high dynamic capacities when larger throughputs are required.
    Journal of Separation Science 05/2012; 35(10-11):1201-12. · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra-fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C(8) , C(18) , RP-Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP-aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5-μm-thick of outer porous layer having 90 Å pore sizes and 150 m(2) /g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed.
    Journal of Separation Science 12/2012; 35(23):3235-49. · 2.59 Impact Factor

Full-text (4 Sources)

Available from
Jun 2, 2014