Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells

Department of Pediatrics, University of Colorado at Denver and Health Sciences Center, B131, 4200 East 9th Ave, Denver, CO 80262, USA.
Angiogenesis (Impact Factor: 4.41). 02/2008; 11(2):169-82. DOI: 10.1007/s10456-007-9087-8
Source: PubMed

ABSTRACT Expansion of the vasa vasorum network has been observed in a variety of systemic and pulmonary vascular diseases. We recently reported that a marked expansion of the vasa vasorum network occurs in the pulmonary artery adventitia of chronically hypoxic calves. Since hypoxia has been shown to stimulate ATP release from both vascular resident as well as circulatory blood cells, these studies were undertaken to determine if extracellular ATP exerts angiogenic effects on isolated vasa vasorum endothelial cells (VVEC) and/or if it augments the effects of other angiogenic factors (VEGF and basic FGF) known to be present in the hypoxic microenvironment. We found that extracellular ATP dramatically increases DNA synthesis, migration, and rearrangement into tube-like networks on Matrigel in VVEC, but not in pulmonary artery (MPAEC) or aortic (AOEC) endothelial cells obtained from the same animals. Extracellular ATP potentiated the effects of both VEGF and bFGF to stimulate DNA synthesis in VVEC but not in MPAEC and AOEC. Analysis of purine and pyrimidine nucleotides revealed that ATP, ADP and MeSADP were the most potent in stimulating mitogenic responses in VVEC, indicating the involvement of the family of P2Y1-like purinergic receptors. Using pharmacological inhibitors, Western blot analysis, and Phosphatidylinositol-3 kinase (PI3K) in vitro kinase assays, we found that PI3K/Akt/mTOR and ERK1/2 play a critical role in mediating the extracellular ATP-induced mitogenic and migratory responses in VVEC. However, PI3K/Akt and mTOR/p70S6K do not significantly contribute to extracellular ATP-induced tube formation on Matrigel. Our studies indicate that VVEC, isolated from the sites of active angiogenesis, exhibit distinct functional responses to ATP, compared to endothelial cells derived from large pulmonary or systemic vessels. Collectively, our data support the idea that extracellular ATP participates in the expansion of the vasa vasorum that can be observed in hypoxic conditions.

Download full-text


Available from: Evgenia V Gerasimovskaya, Jul 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The P2X7 receptor is not only involved in cell proliferation, but also acts as an adenosine 5'-triphosphate (ATP)-gated non-selective channel, and its expression is increased in human melanoma. An irreversible antagonist of P2X7, such as oxidized ATP (oxATP), might block P2X7 receptor-mediated ATP release and proliferative signaling. Therefore, we carried out basic studies to test this idea and to examine the feasibility of using oxATP to treat B16 melanoma. We first found that low-pH conditions (mimicking the hypoxia and acidosis commonly seen in solid tumors) induced P2X7 receptor-mediated ATP release from B16 melanoma cells. Then, we compared the proliferation rates of B16 melanoma wild-type cells and B16 P2X7 receptor-knockdown clone (P2X7-KDC) cells in the presence of P2X7 agonists. The proliferation rate, as well as the ATP release, of agonist-treated P2X7-KDC cells was lower than that of agonist-treated wild-type cells. Next, the effect of P2X7 antagonist oxATP on B16 melanoma cell growth was examined in vitro and in vivo. oxATP significantly decreased B16 melanoma cell proliferation in vitro, and also significantly inhibited tumor growth in B16 melanoma-bearing mice. These data indicate that extracellularly released ATP may serve as an intercellular signaling molecule. We propose that the P2X7 receptor is a promising target for treatment of solid tumors.
    European journal of pharmacology 09/2012; 695(1-3):20-6. DOI:10.1016/j.ejphar.2012.09.001 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many neuronal and non-neuronal cell types release ATP in a controlled manner. After release, extracellular ATP (or, following hydrolysis, ADP) acts on cells in a paracrine manner via P2 receptors. Extracellular nucleotides are now thought to play an important role in the regulation of bone cell function. ATP (and ADP), acting via the P2Y(1) receptor, stimulate osteoclast formation and activity, whilst P2Y(2) receptor stimulation by ATP (or UTP) inhibits bone mineralization by osteoblasts. We found that rat calvarial osteoblasts released ATP constitutively, in a differentiation-dependent manner, with mature, bone-forming osteoblasts releasing up to sevenfold more ATP than undifferentiated, proliferating cells. The inhibitors of vesicular exocytosis, monensin, and N-ethylmaleimide (1-1,000 microM) inhibited basal ATP release by up to 99%. The presence of granular ATP-filled vesicles within the osteoblast cytoplasm was demonstrated by quinacrine staining. Exposure to hypoxia (2% O(2)) for up to 3 min increased ATP release from osteoblasts up to 2.5-fold without affecting cell viability. Peak concentrations of ATP released into culture medium were >1 microM, which equates with concentrations known to exert significant effects on osteoblast and osteoclast function. Monensin and N-ethylmaleimide (100 microM) attenuated the hypoxia-induced ATP release by up to 80%. Depletion of quinacrine-stained vesicles was also apparent after hypoxic stimulation, indicating that ATP release had taken place. These data suggest that vesicular exocytosis is a key mediator of ATP release from osteoblasts, in biologically significant amounts. Moreover, increased extracellular ATP levels following acute exposure to low O(2) could influence local purinergic signaling and affect the balance between bone formation and bone resorption.
    Journal of Cellular Physiology 07/2009; 220(1):155-62. DOI:10.1002/jcp.21745 · 3.87 Impact Factor
  • Source