Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle

Department of Pharmacology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan.
Archiv für Experimentelle Pathologie und Pharmakologie (Impact Factor: 2.47). 07/2008; 377(4-6):503-13. DOI: 10.1007/s00210-007-0223-1
Source: PubMed


Functional muscarinic acetylcholine receptors present in the mouse uterus were characterized by pharmacological and molecular biological studies using control (DDY and wild-type) mice, muscarinic M2 or M3 single receptor knockout (M2KO, M3KO), and M2 and M3 receptor double knockout mice (M2/M3KO). Carbachol (10 nM-100 microM) increased muscle tonus and phasic contractile activity of uterine strips of control mice in a concentration-dependent manner. The maximum carbachol-induced contractions (Emax) differed between cervical and ovarian regions of the uterus. The stage of the estrous cycle had no significant effect on carbachol concentration-response relationships. Tetrodotoxin did not decrease carbachol-induced contractions, but the muscarinic receptor antagonists (11-[[2-[(diethylaminomethyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b[2,3-b][1,4]benzodiazepin6-one (AF-DX116), N-[2-[2-[(dipropylamino)methyl]-1-piperidinyl]ethyl]-5,6-dihydro-6-oxo-11H-pyrido[2,3-b][1,4] benzodiazepine-11-carboxamide (AF-DX384), 4-diphenylacetoxy-N-methyl-piperidine(4-DAMP), para-fluoro-hexa hydro-sila-diphenidol (p-F-HHSiD), himbacine, methoctramine, pirenzepine, and tropicamide) inhibited carbachol-induced contractions in a competitive fashion. The pKb values for these muscarinic receptor antagonists correlated well with the known pKi values of these antagonists for the M3 muscarinic receptor. In uterine strips isolated from mice treated with pertussis toxin (100 microg/kg, i.p. for 96 h), Emax values for carbachol were significantly decreased, but effective concentration that caused 50% of Emax values (EC50) remained unchanged. In uterine strips treated with 4-DAMP mustard (30 nM) and AF-DX116 (1 microM), followed by subsequent washout of AF-DX116, neither carbachol nor N,N,N,-trimethyl-4-(2-oxo-1-pyrolidinyl)-2-butyn-1-ammonium iodide (oxotremorine-M) caused any contractile responses. Both M2 and M3 muscarinic receptor messenger RNAs were detected in the mouse uterus via reverse transcription polymerase chain reaction. Carbachol also caused contraction of uterine strips isolated from M2KO mice, but the concentration-response curve was shifted to the right and downward compared with that for the corresponding wild-type mice. On the other hand, uterine strips isolated from M3KO and M2/M3 double KO mice were virtually insensitive to carbachol. In conclusion, although both M2 and M3 muscarinic receptors were expressed in the mouse uterus, carbachol-induced contractile responses were predominantly mediated by the M3 receptor. Activation of M2 receptors alone did not cause uterine contractions; however, M2 receptor activation enhanced M3 receptor-mediated contractions in the mouse uterus.

Download full-text


Available from: Takio Kitazawa,
  • Source
    • "Muscarinic receptors are long-established as instrumental in neuronal signaling [16]. In addition to the GI tract, muscarinic receptors are expressed normally throughout the body, including the brain [17], eye [18], heart [19], vasculature [20,21], lung [22], bladder [23] and uterus [24]. More recently, novel observations demonstrated muscarinic receptor expression and activation in various cancers including those arising in the brain, breast, colon, skin, lung and prostate [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.
    Cancers 12/2011; 3(1):971-81. DOI:10.3390/cancers3010971
  • Source
    • "Thus, the M 3 antagonism profile of standard muscarinic contractions of the ileum and bladder is not inconsistent with the postulate that both M 2 and M 3 receptors interact to elicit contraction. Studies on the mouse uterus are consistent with a conditional role for the M 2 receptor in contraction (Kitazawa et al. 2008). The competitive antagonism of the muscarinic contractile response of wild-type uterus resembles an M 3 profile, but the E max for contraction is inhibited by about 50% in uterus from the M 2 knockout (KO) mouse. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We explored whether the M(2) muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M(3) muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M(3) selectivity. Then, we used 4-DAMP mustard to inactivate M(3) responses in the guinea pig ileum to attempt to reveal direct, M(2) receptor-mediated contractions. The muscarinic agonist, oxotremorine-M, elicited potent contractions in ileum from wild-type, M(2) receptor knockout, and M(3) receptor knockout mice characterized by negative log EC(50) (pEC (50)) values +/- SEM of 6.75 +/- 0.03, 6.26 +/- 0.05, and 6.99 +/- 0.08, respectively. The corresponding E (max) values in wild-type and M(2) receptor knockout mice were approximately the same, but that in the M(3) receptor knockout mouse was only 36% of wild type. Following 4-DAMP mustard treatment, the concentration-response curve of oxotremorine-M in wild-type ileum resembled that of the M(3) knockout mouse in terms of its pEC (50), E (max), and inhibition by selective muscarinic antagonists. Thus, 4-DAMP mustard treatment appears to inactivate M(3) responses selectively and renders the muscarinic contractile behavior of the wild-type ileum similar to that of the M(3) knockout mouse. Following 4-DAMP mustard treatment, the contractile response of the guinea pig ileum to oxotremorine-M exhibited low potency and a competitive-antagonism profile consistent with an M(3) response. The guinea pig ileum, therefore, lacks a direct, highly potent, M(2)-contractile component but may have a direct, lower potency M(2) component.
    Archiv für Experimentelle Pathologie und Pharmakologie 08/2009; 380(4):327-35. DOI:10.1007/s00210-009-0434-8 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Yeast GeneFilters containing all Saccharomyces cerevisiae open reading frame (ORF) sequences were used to elucidate gene activity in the osmotolerant yeast Zygosaccharomyces rouxii. Labelled cDNA derived from Z. rouxii was targeted to spotted S. cerevisiae ORFs. Approximately 90-100% homology of Z. rouxii genes with those of S. cerevisiae was required for definitive identification of the cDNAs hybridised to GeneFilter. Hybridised labelled cDNAs were visualised as small spots on the microarray, providing simultaneous information on homologous genes present in Z. rouxii and on their level of gene activity. Cross-hybridisation of the GeneFilters displayed 155 as yet unidentified genes of Z. rouxii hybridising to S. cerevisiae ORFs. From those 155 genes, the activity of 86 genes was influenced as a result of NaCl stress. In comparison with S. cerevisiae 24% of Z. rouxii genes revealed a different transcription behaviour following NaCl stress. All of these genes had no previously defined function in osmotic-stress response in Z. rouxii. Therefore, cross-hybridisation of GeneFilters proves to be an appropriate and straightforward method for screening transcripts in Z. rouxii, which provides an extension of the knowledge of genes present in a yeast genus other than S. cerevisiae.
    FEMS Yeast Research 01/2003; 2(4):525-32. DOI:10.1016/S1567-1356(02)00139-3 · 2.82 Impact Factor
Show more