Article

Remediation of the protein data bank archive.

MSD-EBI, EMBL Outstation-Hinxton, Cambridge CB10 1SD, UK.
Nucleic Acids Research (Impact Factor: 8.81). 02/2008; 36(Database issue):D426-33. DOI: 10.1093/nar/gkm937
Source: PubMed

ABSTRACT The Worldwide Protein Data Bank (wwPDB; wwpdb.org) is the international collaboration that manages the deposition, processing and distribution of the PDB archive. The online PDB archive at ftp://ftp.wwpdb.org is the repository for the coordinates and related information for more than 47 000 structures, including proteins, nucleic acids and large macromolecular complexes that have been determined using X-ray crystallography, NMR and electron microscopy techniques. The members of the wwPDB-RCSB PDB (USA), MSD-EBI (Europe), PDBj (Japan) and BMRB (USA)-have remediated this archive to address inconsistencies that have been introduced over the years. The scope and methods used in this project are presented.

0 Bookmarks
 · 
158 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structure validation has become a major issue in the structural biology community, and an essential step is checking the ligand structure. This paper introduces MotiveValidator, a web-based application for the validation of ligands and residues in PDB or PDBx/mmCIF format files provided by the user. Specifically, MotiveValidator is able to evaluate in a straightforward manner whether the ligand or residue being studied has a correct annotation (3-letter code), i.e. if it has the same topology and stereochemistry as the model ligand or residue with this annotation. If not, MotiveValidator explicitly describes the differences. MotiveValidator offers a user-friendly, interactive and platform-independent environment for validating structures obtained by any type of experiment. The results of the validation are presented in both tabular and graphical form, facilitating their interpretation. MotiveValidator can process thousands of ligands or residues in a single validation run that takes no more than a few minutes. MotiveValidator can be used for testing single structures, or the analysis of large sets of ligands or fragments prepared for binding site analysis, docking or virtual screening. MotiveValidator is freely available via the Internet at http://ncbr.muni.cz/MotiveValidator.
    Nucleic Acids Research 05/2014; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.
    Acta Crystallographica Section D Biological Crystallography 10/2014; 70(10). · 7.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NMR spectroscopy is a key technique for understanding the behaviour of proteins, especially highly dynamic proteins that adopt multiple conformations in solution. Overall, protein structures determined from NMR spectroscopy data constitute just over 10% of the Protein Data Bank archive. This review covers the validation of these NMR protein structures, but rather than describing currently available methodology, it focuses on concepts that are important for understanding where and how validation is most relevant. First, the inherent characteristics of the protein under study have an influence on quality and quantity of the distinct types of data that can be acquired from NMR experiments. Second, these NMR data are necessarily transformed into a model for use in a structure calculation protocol, and the protein structures that result from this reflect the types of NMR data used as well as the protein characteristics. The validation of NMR protein structures should therefore take account, wherever possible, of the inherent behavioural characteristics of the protein, the types of available NMR data, and the calculation protocol. These concepts are discussed in the context of ‘knowledge based’ and ‘model versus data’ validation, with suggestions for questions to ask and different validation categories to consider. The principal aim of this review is to stimulate discussion and to help the reader understand the relationships between the above elements in order to make informed decisions on which validation approaches are the most relevant in particular cases.
    Progress in Nuclear Magnetic Resonance Spectroscopy 09/2014; 82:27. · 8.71 Impact Factor

Full-text (2 Sources)

Download
48 Downloads
Available from
Jun 4, 2014