Impact of Glucose‐Dependent Insulinotropic Peptide on Age‐Induced Bone Loss

Institute of Molecular Medicine and Genetics, Program in Regenerative Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA.
Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research (Impact Factor: 6.83). 05/2008; 23(4):536-43. DOI: 10.1359/jbmr.071202
Source: PubMed


GIP is an important hormonal link between nutrition and bone formation. We show for the first time that BMSCs express functional GIP receptors, that expression decreases with aging, and that elevations in GIP can prevent age-associated bone loss.
We previously showed that C57BL/6 mice lose bone mass as they age, particularly between 18 and 24 mo of age. The mechanisms involved in this age-dependent induced bone loss are probably multifactorial, but adequate nutrition and nutritional signals seem to be important. Glucose-dependent insulinotropic peptide (GIP) is an enteric hormone whose receptors are present in osteoblasts, and GIP is known to stimulate osteoblastic activity in vitro. In vivo, GIP-overexpressing C57BL/6 transgenic (GIP Tg(+)) mice have increased bone mass compared with controls. Bone histomorphometric data suggest that GIP increases osteoblast number, possibly by preventing osteoblastic apoptosis. However, potential GIP effects on osteoblastic precursors, bone marrow stromal cells (BMSCs), had not previously been examined. In addition, effects of GIP on age-induced bone loss were not known.
Changes in BMD, biomechanics, biomarkers of bone turnover, and bone histology were assessed in C57BL/6 GIP Tg(+) versus Tg(-) (littermate) mice between the ages of 1 and 24 mo of age. In addition, age-related changes in GIP receptor (GIPR) expression and GIP effects on differentiation of BMSCs were also assessed as potential causal factors in aging-induced bone loss.
We report that bone mass and bone strength in GIP Tg(+) mice did not drop in a similar age-dependent fashion as in controls. In addition, biomarker measurements showed that GIP Tg(+) mice had increased osteoblastic activity compared with wildtype control mice. Finally, we report for the first time that BMSCs express GIPR, that the expression decreases in an age-dependent manner, and that stimulation of BMSCs with GIP led to increased osteoblastic differentiation.
Our data show that elevated GIP levels prevent age-related loss of bone mass and bone strength and suggest that age-related decreases in GIP receptor expression in BMSCs may play a pathophysiological role in this bone loss. We conclude that elevations in GIP may be an effective countermeasure to age-induced bone loss.


Available from: Wendy B Bollag
  • Source
    • "GIP receptor is expressed in osteoblasts, osteocytes, and osteoclasts (95) and in vitro, GIP increases osteoblast number and activity and inhibits osteoclast activity, suggestive of an overall direct anabolic effect in bone (112–114). Transgenic mice over-expressing GIP have increased bone formation, decreased bone resorption, and increased bone mass, and a long-term study also demonstrated reduced bone loss with aging (115, 116). In addition, administration of GIP reduces bone loss in ovariectomized mice (112). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The positive association between body weight and bone density has been established in numerous laboratory and clinical studies. Apart from the direct effect of soft tissue mass on bone through skeletal loading, a number of cytokines and hormones contribute to the positive association between adipose and bone tissue, acting either locally in sites where cells of the two tissues are adjacent to each other or systemically through the circulation. The current review describes the effects of such local and systemic factors on bone physiology. One class of factors are the adipocyte-secreted peptides (adipokines), which affect bone turnover through a combination of direct effects in bone cells and indirect mechanisms mediated by the central nervous system. Another source of hormones that contribute to the coupling between fat and bone tissue are beta cells of the pancreas. Insulin, amylin, and preptin are co-secreted from pancreatic beta cells in response to increased glucose levels after feeding, and are also found in high circulating levels in obesity. A number of peptide hormones secreted from the gastrointestinal tract in response to feeding affect both fat and bone cells and thus can also act as mediators of the association between the two tissues. The current review focuses on results of laboratory studies investigating possible mechanism involved in the positive association between fat mass and bone mass.
    Frontiers in Endocrinology 05/2014; 5:70. DOI:10.3389/fendo.2014.00070
  • Source
    • "Little is known about direct nutrient effects on bone marrow mesenchymal stem cells (BMMSCs). However, previous findings have suggested that nutritional signaling pathways can activate BMMSCs and undergo age-dependent suppression to result in bone loss [1], [2]. Here we focused on amino acids as epidemiological data supported an association between protein intake and anabolic effects on bone [3], [4], as well as between low protein intake and a greater incidence of hip fracture in the elderly. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The physiologic oxygen pressures inside the bone marrow environment are much lower than what is present in the peripheral circulation, ranging from 1-7%, compared to values as high as 10-13% in the arteries, lungs and liver. Thus, experiments done with bone marrow mesenchymal stem cells (BMMSCs) using standard culture conditions may not accurately reflect the true hypoxic bone marrow microenvironment. However, since aging is associated with an increased generation of reactive oxygen species, experiments done under 21%O2 conditions may actually more closely resemble that of the aging bone marrow environment. Aromatic amino acids are known to be natural anti-oxidants. We have previously reported that aromatic amino acids are potent agonists for stimulating increases in intracellular calcium and phospho-c-Raf and in promoting BMMSC differentiation down the osteogenic pathway. Our previous experiments were performed under normoxic conditions. Thus, we next decided to compare a normoxic (21% O2) vs. a hypoxic environment (3% O2) alone or after treatment with aromatic amino acids. Reverse-phase protein arrays showed that 3% O2 itself up-regulated proliferative pathways. Aromatic amino acids had no additional effect on signaling pathways under these conditions. However, under 21%O2 conditions, aromatic amino acids could now significantly increase these proliferative pathways over this "normoxic" baseline. Pharmacologic studies are consistent with the aromatic amino acids activating the extracellular calcium-sensing receptor. The effects of aromatic amino acids on BMMSC function in the 21% O2 environment is consistent with a potential role for these amino acids in an aging environment as functional anti oxidants.
    PLoS ONE 04/2014; 9(4):e91108. DOI:10.1371/journal.pone.0091108 · 3.23 Impact Factor
  • Source
    • "While the etiology of osteoporosis has been viewed primarily in light of endocrine factors originating from the hypothalamo-pituitary axis, in recent years a novel endocrine axis has emerged involving peptides released from the gut [2]. Indeed, in addition to its roles in regulating energy homeostasis and appetite [3], [4], glucose metabolism [5], the neural system [6] and factors associated with higher functions such as mood and depression [7], the gut is emerging as a fundamental regulator of bone health. It is becoming increasingly apparent that a more detailed appreciation of the gastrointestinal/bone interface is vital for an up-to-date understanding of skeletal regulation, and the endocrine actions of the gut. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastrointestinal peptides are increasingly being linked to processes controlling the maintenance of bone mass. Peptide YY (PYY), a gut-derived satiety peptide of the neuropeptide Y family, is upregulated in some states that also display low bone mass. Importantly, PYY has high affinity for Y-receptors, particularly Y1R and Y2R, which are known to regulate bone mass. Anorexic conditions and bariatric surgery for obesity influence circulating levels of PYY and have a negative impact on bone mass, but the precise mechanism behind this is unclear. We thus examined whether alterations in PYY expression affect bone mass. Bone microstructure and cellular activity were analyzed in germline PYY knockout and conditional adult-onset PYY over-expressing mice at lumbar and femoral sites using histomorphometry and micro-computed tomography. PYY displayed a negative relationship with osteoblast activity. Male and female PYY knockout mice showed enhanced osteoblast activity, with greater cancellous bone mass. Conversely, PYY over-expression lowered osteoblast activity in vivo, via a direct Y1 receptor mediated mechanism involving MAPK stimulation evident in vitro. In contrast to PYY knockout mice, PYY over expression also altered bone resorption, as indicated by greater osteoclast surface, despite the lack of Y-receptor expression in osteoclastic cells. While evident in both sexes, cellular changes were generally more pronounced in females. These data demonstrate that the gut peptide PYY is critical for the control of bone remodeling. This regulatory axis from the intestine to bone has the potential to contribute to the marked bone loss observed in situations of extreme weight loss and higher circulating PYY levels, such as anorexia and bariatric obesity surgery, and may be important in the maintenance of bone mass in the general population.
    PLoS ONE 07/2012; 7(7):e40038. DOI:10.1371/journal.pone.0040038 · 3.23 Impact Factor
Show more