Article

Effects of exercise order on upper-body muscle activation and exercise performance.

College of Physical Education, Catholic University of Brasilia, Brasilia, Brazil.
The Journal of Strength and Conditioning Research (Impact Factor: 1.86). 12/2007; 21(4):1082-6. DOI: 10.1519/R-21216.1
Source: PubMed

ABSTRACT With the purpose of manipulating training stimuli, several techniques have been employed to resistance training. Two of the most popular techniques are the pre-exhaustion (PRE) and priority system (PS). PRE involves exercising the same muscle or muscle group to the point of muscular failure using a single-joint exercise immediately before a multi-joint exercise (e.g., peck-deck followed by chest press). On the other hand, it is often recommended that the complex exercises should be performed first in a training session (i.e., chest press before peck-deck), a technique known as PS. The purpose of the present study was to compare upper-body muscle activation, total repetitions (TR), and total work (TW) during PRE and PS. Thirteen men (age 25.08 +/- 2.58 years) with recreational weight-training experience performed 1 set of PRE and 1 set of PS in a balanced crossover design. The exercises were performed at the load obtained in a 10 repetition maximum (10RM) test. Therefore, chest press and peck-deck were performed with the same load during PRE and PS. Electromyography (EMG) was recorded from the triceps brachii (TB), anterior deltoids, and pectoralis major during both exercises. According to the results, TW and TR were not significantly different (p > 0.05) between PRE and PS. Likewise, during the peck-deck exercise, no significant (p > 0.05) EMG change was observed between PRE and PS order. However, TB activity was significantly (p < 0.05) higher when chest press was performed after the peck-deck exercise (PRE). Our findings suggest that performing pre-exhaustion exercise is no more effective in increasing the activation of the prefatigued muscles during the multi-joint exercise. Also, independent of the exercise order (PRE vs. PS), TW is similar when performing exercises for the same muscle group. In summary, if the coach wants to maximize the athlete performance in 1 specific resistance exercise, this exercise should be placed at the beginning of the training session.

Download full-text

Full-text

Available from: Paulo Gentil, Apr 03, 2015
13 Followers
 · 
763 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-exhaustion (PreEx) training is advocated on the principle that immediately preceding a compound exercise with an isolation exercise can target stronger muscles to pre-exhaust them to obtain greater adaptations in strength and size. However, research considering PreEx training method is limited. The present study looked to examine the effects of a PreEx training programme. Thirty-nine trained participants (male = 9, female = 30) completed 12 weeks of resistance training in 1 of 3 groups: a group that performed PreEx training (n = 14), a group that performed the same exercise order with a rest interval between exercises (n = 17), and a control group (n = 8) that performed the same exercises in a different order (compound exercises prior to isolation). No significant between-group effects were found for strength in chest press, leg press, or pull-down exercises, or for body composition changes. Magnitude of change was examined for outcomes also using effect size (ES). ESs for strength changes were considered large for each group for every exercise (ranging 1.15 to 1.62). In conclusion, PreEx training offers no greater benefit to performing the same exercises with rest between them compared with exercises performed in an order that prioritises compound movements.
    Applied Physiology Nutrition and Metabolism 08/2015; 39(11):1-6. DOI:10.1139/apnm-2014-0162 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study compared the effects of order of muscle groups' exercised (larger to smaller muscles vs. smaller to larger muscles) on the acute levels of total testosterone, free testosterone and cortisol during resistance training (RT) sessions. Healthy male participants (n=8; age: 28.8 ± 6.4 years; body mass: 87.0 ± 10.6 kg; body height: 181.0 ± 0.7 cm; BMI: 26.5 ± 4.1) were randomly separated into two experimental groups. The first group (LG-SM) performed an RT session (3 sets of 10 repetitions and a 2 min rest period) of the exercises in following order: bench press (BP), lat pulldown (LP), barbell shoulder press (BSP), triceps pushdown (TP) and barbell cut (BC). The second group (SM-LG) performed an RT session in following order: BC, TP, BSP, LA, BP. Blood was collected at the end of the last repetition of each session. Control samples of blood were taken after 30 min of rest. Significant differences were observed in the concentrations of total testosterone (p < 0.05), free testosterone (p < 0.0001) and cortisol (p < 0.0001) after both RT sessions in comparison to rest. However, when comparing LG-SM and SM-LG, no significant differences were found. The results suggest that, while RT sessions induce an acute change in the levels of testosterone and cortisol, this response is independent of the order of exercising muscle groups.
    Journal of Human Kinetics 12/2014; 442014(1):111-120. DOI:10.2478/hukin-2014-0116 · 0.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to examine the effect of fatigue during one set of 6-RM bench pressing upon the muscle patterning and performance. Fourteen resistance-trained males (age 22.5±2.0 years, stature 1.82±0.07 m, body mass 82.0±7.8 kg) conducted a 6-RM bench press protocol. Barbell kinematics and EMG activity of pectoralis major, deltoid anterior, biceps brachii, triceps brachii, rectus abdominis, oblique external and erector spinae were measured ineach repetition during the 6-RM bench press. Total lifting time increased and the velocity in the ascending movement decreased (p≤0.001). However, the kinematics in the descending phase deferred: the time decreased and velocity increased during the 6-RM (p≤0.001). Generally, muscles increased their EMG amplitude during the six repetitions in the ascending movement, while only three of the seven measured muscles showed an increase over the six repetitions in the descending part in 6-RM bench pressing. It was concluded that the bench pressing performance decreased (lower barbell velocities and longer lifting times) with increasing fatigue in the 6-RM execution. Furthermore EMG increased in the prime movers and the trunk stabilizers (abdominal and spine), while the antagonist muscle (biceps) activity was not affected by fatigue during the lifting phase in a single set of 6-RM bench pressing
    Journal of Human Kinetics 04/2014; 40(40):57-65. DOI:10.2478/hukin-2014-0007 · 0.70 Impact Factor