Systematic screens for human disease genes, from yeast to human and back.

European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
Molecular BioSystems (Impact Factor: 3.18). 02/2008; 4(1):18-29. DOI: 10.1039/b709494a
Source: PubMed

ABSTRACT Systematic screens for human disease genes have emerged in recent years, due to the wealth of information provided by genome sequences and large scale datasets. Here we review how integration of genomic data in yeast and human is helping to elucidate the genetic basis of mitochondrial diseases. The identification of nearly all yeast mitochondrial proteins and many of their functional interactions provides insight into the role of mitochondria in cellular processes. This information enables prioritization of the candidate genes underlying mitochondrial disorders. In an iterative fashion, the link between predicted human candidate genes and their disease phenotypes can be experimentally tested back in yeast.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cross-complementation studies offer the possibility to overcome limitations imposed by the inherent complexity of multicellular organisms in the study of human diseases, by taking advantage of simpler model organisms like the budding yeast Saccharomyces cerevisiae. This review deals with, (1) the use of S. cerevisiae as a model organism to study human diseases, (2) yeast-based screening systems for the detection of diseases modifiers, (3) Hailey-Hailey as an example of a calcium-related disease, and (4) the presentation of a yeast-based model to search for chemical modifiers of Hailey-Hailey disease. The preliminary experimental data presented and discussed here show that it is possible to use yeast as a model system for Hailey-Hailey disease and suggest that in all likelihood, yeast has the potential to reveal candidate drugs for the treatment of this disorder. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease.
    Biochimica et Biophysica Acta 02/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since its discovery and description by Louis Pasteur, the budding yeast Saccharomyces cerevisiae, which was used for thousands of years for alcoholic fermentation and as a leavening agent, has become a popular model system in biology. One of the reasons for this popularity is the strong conservation from yeast to human of most of the pathways controlling cell growth and fate. In addition, at least 30 % of human genes involved in diseases have a functional homolog in yeast. Hence, yeast is now widely used for modelling and deciphering physiopathological mechanisms as well as for developing pharmacological approaches like phenotype-based drug screening. Three examples of such yeast-based chemobiological studies are presented. © 2014 médecine/sciences – Inserm.
    Médecine sciences : M/S. 12/2014; 30(12):1161-8.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epstein-Barr virus (EBV) is tightly associated to certain human cancers but there is of today no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. EBNA1 is expressed in all EBV infected cells and is highly antigenic. All infected individuals, including cancer patients, have CD8(+) T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV's immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the Major Histocompatibility Complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase II/DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogues thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase II/DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogues stimulate in a GAr-dependent manner EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.
    Disease Models and Mechanisms 02/2014; · 4.96 Impact Factor