Article

Homer1a is a core brain molecular correlate of sleep loss.

Center for Integrative Genomics and Lausanne DNA Array Facility, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2008; 104(50):20090-5. DOI: 10.1073/pnas.0710131104
Source: PubMed

ABSTRACT Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.

0 Followers
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circadian rhythm alterations have been implicated in multiple neuropsychiatric disorders, particularly those of sleep, addiction, anxiety, and mood. Circadian rhythms are known to be maintained by a set of classic clock genes that form complex mutual and self-regulatory loops. While many other genes showing rhythmic expression have been identified by genome-wide studies, their roles in circadian regulation remain largely unknown. In attempts to directly connect circadian rhythms with neuropsychiatric disorders, genetic studies have identified gene mutations associated with several rare sleep disorders or sleep-related traits. Other than that, genetic studies of circadian genes in psychiatric disorders have had limited success. As an important mediator of environmental factors and regulators of circadian rhythms, the epigenetic system may hold the key to the etiology or pathology of psychiatric disorders, their subtypes or endophenotypes. Epigenomic regulation of the circadian system and the related changes have not been thoroughly explored in the context of neuropsychiatric disorders. We argue for systematic investigation of the circadian system, particularly epigenetic regulation, and its involvement in neuropsychiatric disorders to improve our understanding of human behavior and disease etiology.
    Neuroscience Bulletin 02/2015; 31(1):141-59. DOI:10.1007/s12264-014-1495-3 · 1.83 Impact Factor
  • Molecular Psychiatry 11/2014; 20(1):48-55. DOI:10.1038/mp.2014.138 · 15.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sleep occurs in a wide range of animal species as a vital process for the maintenance of homeostasis, metabolic restoration, physiological regulation, and adaptive cognitive functions in the central nervous system. Long-term perturbations induced by the lack of sleepSleep are mostly mediated by changes at the level of transcription and translation. This chapter reviews studies in humans, rodents, and flies to address the various ways by which sleep deprivation affects gene expressionGene expression in the nervous system, with a focus on genes related to neuronal plasticity, brain function, and cognitionCognition . However, the effects of sleep deprivation on gene expression and the functional consequences of sleep loss are clearly not restricted to the cognitive domain but may include increased inflammationInflammation , expression of stress-related genes, general impairment of protein translation, metabolic imbalance, and thermalThermoregulation deregulation.

Full-text (2 Sources)

Download
51 Downloads
Available from
May 22, 2014